Nội dung được dịch bởi AI, chỉ mang tính chất tham khảo
Các khiếm khuyết trong học tập liên quan đến cholinergic ở loài marmoset do scopolamine và hemicholinium nội thất gây ra
Tóm tắt
Các loài marmoset thông thường (Callithrix jacchus) đã được huấn luyện thực hiện các nhiệm vụ phân biệt vị trí hàng ngày trong một Ứng dụng Kiểm tra chung Wisconsin. Việc chặn các thụ thể acetylcholine bằng scopolamine đã được phát hiện là làm giảm khả năng học vị trí. Kiểm tra vào ngày hôm sau sau khi điều trị bằng scopolamine cho thấy rằng một nhiệm vụ được học dưới ảnh hưởng của scopolamine không được mã hóa vào bộ nhớ dài hạn. Sự thiếu hụt acetylcholine đạt được thông qua tiêm hemicholinium vào não thất 4 giờ trước khi kiểm tra đã dẫn đến một sự suy giảm sâu sắc trong khả năng học phân biệt vị trí. Có thể cho rằng sự thiếu hụt acetylcholine trung tâm ở linh trưởng có thể cung cấp một mô hình hữu ích cho chứng mất trí senile.
Từ khóa
#marmoset #cholinergic #scopolamine #học tập #chứng mất tríTài liệu tham khảo
Bartus RT, Johnson HR (1976) Short term memory in the rhesus monkey: disruption from the anticholinergic scopolamine. Pharmacol Biochem Behav 5:39–46
Birks RI, MacIntosh FC (1961) Acetylcholine metabolism of a sympathetic ganglion. Can J Biochem Physiol 39:787–827
Bohdanecky Z, Jarvik ME, Carley JL (1967) Differential impairment of delayed matching in monkeys by scopolamine and scopolamine methylbromide. Psychopharmacologia 11:293–299
Caulfield MP, May PJ, Pedder EK, Prince AK (1983) Behavioural studies with ethylcholine mustard aziridinium (ECMA). Br J Pharmacol 79:287P
Cotterman TE, Meyer DR, Wickens DD (1956) Discrimination reversal learning in marmosets. J Comp Physiol Psychol 49:539–541
Crow TJ, Grove-White IG (1973) An analysis of the learning deficit following hyoscine administration to man. Br J Pharmacol 49:322–327
Davies P, Maloney AJ (1976) Selective loss of central cholinergic neurones in Alzheimer's disease. Lancet II:1430
Davies P, Verth AH (1978) Regional distribution of muscarinic acethylcholine receptors in normal and Alzheimer's type dementia brains. Brain Res 138:385–392
Davis RT (1956) Problem-solving behavior of monkeys as a function of work variables. J Comp Physiol Psychol 49:499–506
Drachman DA (1977) Memory and cognitive function in man: does the cholinergic system have a specific role? Neurology 27:783–790
Evans HL (1975) Scopolamine effects on visual discrimination: modifications related to stimulus control. J Pharmacol Exp Ther 195:105–109
Freeman JJ, Macri JR, Choi RL, Jenden DJ (1979) Studies on the behavioral and biochemical effects of hemicholinium in vivo. J Pharmacol Exp Ther 210:91–97
Gellerman LW (1933) Chance orders of alternating stimuli in visual discrimination experiments. J Genet Psychology 42:206–208
Glick SD, Jarvik ME (1969) Amphetamine, scopolamine and chlorpromazine interactions on delayed matching performance in monkeys. Psychopharmacologia 16:147–155
Harlow HF, Bromer JA (1938) A test-apparatus for monkeys. Psychol Rec 2:434–436
Jacobsen CF, Wolfe JB, Jackson TA (1935) An experimental analysis of the functions of the frontal association area in primates. J Nerv Ment Dis 83:1–4
Malmo RB (1942) Interference factors in delayed response in monkeys after removal of frontal lobes. J Neurophysiol 5:295–308
Mewaldt SP, Ghoneim MM (1979) The effects and interactions of scopolamine, physostigmine and methamphetamine on human memory. Pharmacol Biochem Behav 10:205–210
Meyer DR (1951) Food deprivation and discrimination reversal learning in the monkey. J Exp Psychol 44:10–16
Meyer DR, Treichler FR, Meyer PM (1965) Discrete-trial training techniques and stimulus variables. In: Schrier AM, Harlow HF, Stollnitz F (eds) Behaviour of non-human primates, vol. 1. Academic Press, New York, pp 1–49
Miles RC (1959) Discrimination in the squirrel monkey as a function of deprivation and problem difficulty. J Exp Psychol 57:15–19
Miles RC, Meyer DR (1956) Learning sets in marmosets. J Comp Physiol Psychol 49:219–222
Mishkin M (1964) Perseveration of central sets after frontal lesions in monkeys. In: Warren JM, Akert K (eds) The frontal granular cortex and behaviour. McGraw-Hill, New York, pp 219–241
Mishkin M, Spiegler BJ, Saunders RC, Malamut BL (1982) An animal model of global amnesia. In: Corkin S, Davis KL, Growde JH, Usdin E, Wurtman RJ (eds) Alzheimer's disease: a review of progress. Raven Press, New York, pp 235–247
Overton DA (1964) State-dependent or “dissociated” learning produced with pentobarbital. J Comp Physiol Psychol 57:3–12
Perry EK, Perry RH, Blessed G, Tomlinson BE (1977) Necropsy evidence of central cholinergic deficits in senile dementia. Lancet I:189
Perry EK, Tomlinson BE, Blessed G, Bergmann K, Gibson PH, Perry RH (1978) Correlation of cholinergic abnormalities with senile plaques and mental test scores in senile dementia. Br Med J 2:1457–1459
Ridley RM, Bowes PM, Baker HF, Crow TJ (1984) An involvement of acetylcholine in object discrimination learning and memory in the marmoset. Neuropsychologia in press
Russell RW, Macri J (1978) Some behavioral effects of suppressing choline transport by cerebroventricular injection of hemicholinium-3. Pharmacol Biochem Behav 8:399–403
Safer DJ, Allen RP (1971) The central effects of scopolamine in man. Biol Psychiatry 3:347–355
Stephan H, Baron G, Schwerdtfeyer WK (1980) The brain of the common marmoset: a stereotaxic atlas. Springer, Berlin Heidelberg New York
Wilcock GK, Esiri MM, Bowen DM, Smith CCT (1982) Alzheimer's disease: correlation of cortial choline acetyltransferase activity with the severity of dementia and histological abnormalities. J Neurol Sci 57:407–417
Yamamura HI, Snyder SH (1973) High affinity transport of choline into synaptosomes of rat brain. J Neurochem 21:1355–1374
