Cholesteatoma Pearls: Practical Points and Update

James T. Castle1
1Department of Oral & Maxillofacial Pathology, Naval Postgraduate Dental School, Naval Medical Professional Development Center, 8955 Wood Road, Bethesda, MD, 20889-5638, USA

Tóm tắt

Từ khóa


Tài liệu tham khảo

Yung M, Tono T, Olszewska E, et al. EAONO/JOS Joint consensus statements on the definitions, classification and staging of middle ear cholesteatoma. J Int Adv Otol. 2017;13:1–8.

Müller J. Ueber den feineren bau und die formen der krankhaften geschwulste. Berlin, G Reimer. 1838. Folio.

De Verney JG. Traité de l’organie de l’ouïe. Paris: E. Michallet; 1683.

Aquino JE, Cruz Filho NA, de Aquino JN. Epidemiology of middle ear and mastoid cholesteatomas: study of 1146 cases. Braz J Otorhinolaryngol. 2011;77:341–7.

Bennett M, Warren F, Jackson GC. Congenital cholesteatoma: theories, facts and 53 patients. Otolaryngol Clin N Am. 2006;39:1081–94.

Shohet JA, De Jong AI. The management of pediatric cholesteatoms. Otolaryngol Clin N Am. 2002;35:841–51.

Olszewska E, Wagner M, Bernal-Sprekelsen M, et al. Etiopathogenesis of cholesteatoma. Eur Arch Otorhinolaryngol. 2004;261:6–24.

Barath K, Huber AM, Stampfil P, et al. Neuroradiology of cholesteatomas. AJNR Am J Neuroradiol. 2011;32:221–9.

Jennings BA, Prinsley P, Philpott C, et al. The genetics of cholesteatoma. A systematic review using narrative synthesis. Clin Otolaryngol. 2017;43:55–67.

Bois E, Nassar M, Zenaty D, et al. Otologic disorders in Turner syndrome. Eur Ann Otorhinolaryngol Head Neck Dis. 2017;135:21–4.

Lim DBN, Gault EJ, Kubba H, et al. Cholesteatoma has a high prevalence in Turner syndrome, highlighting the need for earlier diagnosis and the potential benefits of otoscopy training for paediatricians. Acta Paediatr. 2014;103:e282–7.

Hall JE, Richter GT, Choo DI. Surgical management of otologic disease in pediatric patients with Turner syndrome. Int J Pediatr Otorhinolaryngol. 2009;73:57–65.

Mann W, Al-Nawas B, Wriedt S. Cholesteatoma of the hypotympanum in a patient with Treacher Collins syndrome. Auris Nasus Larynx. 2014;41:101–4.

Nash R, Possamai V, Maskell S, et al. Canal wall reconstruction and preservation in the surgical management of cholesteatoma in children with Down’s syndrome. Int J Pediatr Otorhinolaryngol. 2014;78:1747–51.

Paulson LM, Weaver TS, Macarthur CJ. Outcomes of tympanostomy tube placement in children with Down syndrome—a retrospective review. Int J Pediatr Otorhinolaryngol. 2014;78:223–6.

Bacciu A, Pasanisi E, Vincenti V, et al. Surgical treatment of middle ear cholesteatoma in children with Down syndrome. Otol Neurotol. 2005;26:1007–10.

Suzuki C, Ohtani I. Bone destruction resulting from rupture of a cholesteatoma sac: temporal bone pathology. Otol Neurotol. 2004;25:674–7.

Büchner SA, Itin P. Focal dermal hypoplasia syndrome in a male patient. Report of a case and histologic and immunohistochemical studies. Arch Dermatol. 1992;128:1078–82.

Imbery TE, Sobin LB, Commesso E, et al. Long-term otologic and audiometric outcomes in patients with cleft palate. Otolaryngol Head Neck Surg. 2017;157:676–82.

Kopcsányi G, Vincze O, Bagdán V, et al. Retrospective analysis of tympanoplasty in children with cleft palate: a 24-year experience. II. Cholesteatomatous cases. Int J Pediatr Otorhinolaryngol. 2015;79:698–706.

Djurhuus BD, Skytthe A, Faber CE, Christensen K. Cholesteatoma risk in 8,593 orofacial cleft cases and 6,989 siblings: a nationwide study. Laryngoscope 2015;125:1225–9.

Lau CC, Loh KK, Kunaratnam N. Middle ear diseases in cleft palate patients in Singapore. Ann Acad Med Singap. 1988;17:372–4.

Kuo CL, Lien CF, Chu CH, et al. Otitis media with effusion in children with cleft lip and palate: a narrative review. Int J Pediatr Otorhinolaryngol. 2013;77:1403–9.

James AL, Papsin BC. Some considerations in congenital cholesteatoma. Curr Opin Otolaryngol Head Neck Surg. 2013;21:431–9.

Harris L, Cushing SL, Hubbard B, et al. Impact of cleft palate type on the incidence of acquired cholesteatoma. Int J Pediatr Otorhinolaryngol. 2013;77:695–8.

Kuo CL, Shiao AS, Wen HC, et al. Increased risk of cholesteatoma among patients with allergic rhinitis: a nationwide investigation. Laryngoscope 2017;128:547–53.

Kuo CL, Shiao AS, Yung M, et al. Updates and knowledge gaps in cholesteatoma research. Biomed Res Int. 2015;2015:1–17.

Michaels L. Origin of congenital cholesteatoma from a normally occurring epidermoid rest in the developing middle ear. Int J Pediatr Otorhinolaryngol. 1988;15:51–65.

Levenson MJ, Michaels L, Parisier SC, et al. Congenital cholesteatomas in children: an embryologic correlation. Laryngoscope 1988;98:949–55.

Aimi K. Role of the tympanic ring in the pathogenesis of congenital cholesteatoma. Laryngoscope 1983;93:1140–6.

Tos M. A new pathogenesis of mesotympanic (congenital) cholesteatoma. Laryngoscope 2000;110:1890–7.

Kuo CL. Etiopathogenesis of acquired cholesteatoma: prominent theories and recent advances in biomolecular research. Laryngoscope 2015;125:234–40.

Sudhoff H, Tos M. Pathogenesis of attic cholesteatoma: clinical and immunohistochemical support for combination of retraction theory and proliferation theory. Am J Otol. 2000;21:786–92.

Karmody CS, Northrop C. The pathogenesis of acquired cholesteatoma of the human middle ear: support for the migration hypothesis. Otol Neurotol. 2012;33:42–7.

Falcioni M, Taibah A, Rohit. Pulsatile tinnitus as a rare presenting symptom of residual cholesteatoma. J Laryngol Otol. 2004;118:165–6.

Ahn JM, Huang CC, Abramson M. Localization of interleukin-1 in human cholesteatoma. Am J Otolaryngol. 1990;11:71–7.

Venail F, Bonafe A, Poirrier V, et al. Comparison of echo-planar diffusion-weighted imaging and delayed postcontrast T1-weighted MR imaging for the detection of residual cholesteatoma. AJNR Am J Neuroradiol. 2008;29:1363–8.

Corrales CE, Blevins NH. Imaging for evaluation of cholesteatoma: current concepts and future directions. Curr Opin Otolaryngol Head Neck Surg. 2013;21:461–7.

Henninger B, Kremser C. Diffusion weighted imaging for the detection and evaluation of cholesteatoma. World J Radiol. 2017;28:217–22.

Vercruysse JP, De Foer B, Pouillon M, et al. The value of diffusion-weighted MR imaging in the diagnosis of primary acquired and residual cholesteatoma: a surgical verified study of 100 patients. Eur Radiol. 2006;16:1461–7.

Más-Estellés F, Mateos-Fernández M, Carrascosa-Bisquert B, et al. Contemporary non-echo-planar diffusion-weighted imaging of middle ear cholesteatomas. Radiographics. 2012;32:1197–213.

Caponetti G, Thompson LD, Pantanowitz L. Cholesteatoma. Ear Nose Throat J. 2009;88:1196–8.

Bassiouny M, Badour N, Omran A, et al. Histopathological and immunohistochemical characteristics of acquired cholesteatoma in children and adults. EJENTAS 2012;13:7–12.

Rothschild S, Ciernik IF, Hartmann M, et al. Cholesteatoma triggering squamous cell carcinoma: case report and literature review of a rare tumor. Am J Otolaryngol. 2009;30:256–60.

Hamed MA, Nakata S, Shiogama K, et al. Cytokeratin 13, Cytokeratin 17, and Ki-67 expression in human acquired cholesteatoma and their correlation with its destructive capacity. Clin Exp Otorhinolaryngol. 2017;10:213–20.

Chole RA, Tinling SP. Basal lamina breaks in the histogenesis of cholesteatoma. Laryngoscope 1985;95:270–5.

Ferlito O, Devaney KO, Rinaldo A, et al. Clinicopathological consultation ear cholesteatoma versus cholesterol granuloma. Ann Otol Rhinol Laryngol. 1997;106:79–85.

Preciado DA. Biology of cholesteatoma: special considerations in pediatric patients. Int J Pediatr Otorhinolaryngol. 2012;76:319–21.

Maniu A, Harabagiu O, Perde Schrepler M, et al. Molecular biology of cholesteatoma. Rom J Morphol Embryol. 2014;55:7–13.

Sudhoff H, Dazert S, Gonzales AM, et al. Angiogenesis and angiogenic growth factors in middle ear cholesteatoma. Am J Otol. 2000;21:793–8.

Fukudome S, Wang C, Hamajima Y, et al. Regulation of the angiogenesis of acquired middle ear cholesteatomas by inhibitor of DNA binding transcription factor. JAMA Otolaryngol Head Neck Surg. 2013;139:273–8.

Haruyama T, Furukawa M, Kusunoki T, et al. Expression of IL-17 and its role in bone destruction in human middle ear cholesteatoma. J Otorhinolaryngol Relat Spec. 2010;72:325–31.

Olszewska E, Matulka M, Mroczko B, et al. Diagnostic value of matrix metalloproteinase 9 and tissue inhibitor of matrix metalloproteinases 1 in cholesteatoma. Histol Histopathol. 2016;31:307–15.

Chen AP, Wang B, Zhong F, et al. Expression levels of receptor activator of nuclear factor-κB ligand and osteoprotegerin are associated with middle ear cholesteatoma risk. Acta Otolaryngol. 2015;135:655–66.

Kuo CL, Liao WH, Shiao, AS. A review of current progress in acquired cholesteatoma management. Eur Arch Otorhinolaryngol. 2015;272:3601–9.

Morita Y, Takahashi K, Izumi S, et al. Risk factors of recurrence in pediatric congenital cholesteatoma. Otol Neurotol. 2017;38:1463–9.

Vital V. Pediatric cholesteatoma: personal experience and review of the literature. Otorhinolaryngol Head Neck Surg. 2011;45:5–14.

Zhang H, Wong PY, Magos T, et al. Use of narrow band imaging and 4K technology in otology and neuro-otology: preliminary experience and feasibility study. Eur Arch Otorhinolaryngol. 2017;275:301–5.

Tomlin J, Chang D, McCutcheon B, et al. Surgical technique and recurrence in cholesteatoma: a meta-analysis. Audiol Neurootol. 2013;18:135–42.