Chlorfenapyr resistance in the spider mite Tetranychus urticae: stability, cross-resistance and monitoring of resistance

Phytoparasitica - Tập 41 - Trang 503-513 - 2013
Roberto L. Nicastro1, Mário E. Sato2, Valter Arthur1, Marcos Z. da Silva2
1Radiobiology and Environment Department, Center of Nuclear Energy in Agriculture–CENA/USP, Piracicaba City, Brazil
2Laboratory of Acarology, Biological Institute, APTA, Campinas City, Brazil

Tóm tắt

The two-spotted spider mite, Tetranychus urticae Koch, is a key pest of many agricultural crops. Studies of stability of resistance, cross-resistance relationships and monitoring of chlorfenapyr resistance were carried out with T. urticae to provide basic information necessary to define effective acaricide resistance management strategies for this pest. Chlorfenapyr resistance was shown to be stable in the absence of selection pressure under laboratory conditions. The activities of seven different acaricides against chlorfenapyr-resistant and -susceptible strains of T. urticae were evaluated. The results indicated possible positive cross-resistance between chlorfenapyr and the acaricides abamectin, propargite and etoxazole. No cross-resistance was detected for the acaricides milbemectin, fenpyroximate and diafenthiuron. A possible negatively correlated cross-resistance was observed between chlorfenapyr and spiromesifen. The evaluation of 21 T. urticae populations from several crops in the States of São Paulo, Mato Grosso, Goiás, and Bahia, in Brazil, indicated that the susceptibility of mites to chlorfenapyr was variable, with percentages of resistant mites ranging from 0.0 to 86.5%. The highest resistance frequencies were observed in ornamental plants in the State of São Paulo. Some populations from cotton and papaya also presented high frequencies of chlorfenapyr resistance. This is the first report on chlorfenapyr resistance in T. urticae on cotton and papaya in Brazil. Strategies for the management of acaricide resistance are discussed.

Tài liệu tham khảo

Abbott, W. S. (1925). A method for computing the effectiveness of an insecticide. Journal of Economic Entomology, 18, 265–267. AGROFIT. (2012). Sistema de agrotóxicos fitossanitários, do Ministério da Agricultura, Pecuária e Abastecimento. http://extranet.agricultura.gov.br/agrofit_cons/principal_agrofit_cons. Accessed 25 July 2012. Asahara, M., Uesugi, R., & Osakabe, M. H. (2008). Linkage between one of the polygenic hexythiazox resistance genes and an etoxazole resistance gene in the twospotted spider mite (Acari: Tetranychidae). Journal of Economic Entomology, 101, 1704–1710. Ay, R., & Gürkan, M. O. (2005). Resistance to bifenthrin and resistance mechanisms of different strains of the two-spotted spider mite (Tetranychus urticae Koch) from Turkey. Phytoparasitica, 33, 237–244. Ay, R., & Kara, F. E. (2011). Toxicity, inheritance and biochemistry of clofentezine resistance in Tetranychus urticae. Insect Science, 18, 503–511. Ayres, M., Ayres, M., Jr., Ayres, D. L., & dos Santos, A. A. S. (2007). BioEstat 5.0. Statistical applications in the field of biomedical science. Belém, Brazil: Sociedade Civil Mamirauá/CNPq. Black, B. C., Hollingworth, R. M., Ahammadsahib, K. I., Kukel, C. D., & Donovan, S. (1994). Insecticidal action and mitochondrial uncoupling activity of AC 303630 and related halogenated pyrroles. Pesticide Biochemistry and Physiology, 50, 115–128. Campos, F., Krupa, D. A., & Dybas, R. A. (1996). Susceptibility of populations of twospotted spider mites (Acari: Tetranychidae) from Florida, Holland and the Canary Islands to abamectin and characterization of abamectin resistance. Journal of Economic Entomology, 89, 594–610. Carrière, Y., Ellers-Kirk, C., Biggs, R., Higginson, D. M., Dennehy, T. J., & Tabashnik, B. E. (2004). Effects of gossypol on fitness costs associated with resistance to Bt cotton in pink bollworm. Journal of Economic Entomology, 97, 1710–1718. Chapman, R. B., & Penman, D. R. (1979). Negatively correlated cross-resistance to a synthetic pyrethroid in organophosphorus-resistant Tetranychus urticae. Nature, 281, 298–299. Chiavegato, L. G., & Mischan, M. M. (1981). Effect of Tetranychus (T.) urticae (Koch, 1836), 1963 (Acari: Tetranychidae) on the production of strawberry (Fragaria spp.) cv. “Campinas”. Científica, 9, 257–266. Croft, B. A., & Van de Baan, H. E. (1988). Ecological and genetic factors influencing evolution of pesticide resistance in tetranychid and phytoseiid mites. Experimental and Applied Acarology, 4, 277–300. de Moraes, G. J., & Flechtmann, C. H. W. (2008). Manual de acarologia. Acarologia básica e ácaros de plantas cultivadas no Brasil. Ribeirão Preto, Brazil: Holos Editora. DeKeyser, M. A. (2005). Acaricide mode of action. Pest Management Science, 61, 103–110. Dennehy, T. J., Nyrop, J. P., & Martinson, T. E. (1990). Characterization and exploitation of instability of spider mite. In M. B. Green, H. Lebaron, & W. K. Moberg (Eds.), Managing resistance to agrochemicals: From fundamental research to practical strategies (pp. 77–91). Washington, DC: American Chemical Society. Dermauw, W., Ilias, A., Riga, M., Tsagkarakou, A., Grbić, M., Tirry, L., et al. (2012). The cys-loop ligand-gated ion channel gene family of Tetranychus urticae: implications for acaricide toxicology and a novel mutation associated with abamectin resistance. Insect Biochemistry and Molecular Biology, 42, 455–465. Dunley, J. E., & Croft, B. A. (1992). Dispersal and gene flow of pesticide resistance traits in phytoseiid and tetranychid mites. Experimental and Applied Acarology, 14, 313–325. Fadini, M. A. M., Venzon, M., Oliveira, H. G., & Pallini, A. (2006). Manejo integrado das principais pragas do morangueiro. In S. P. de Carvalho (Ed.), Boletim do morango: Cultivo convencional, segurança alimentar, cultivo orgânico (pp. 81–95). Belo Horizonte, Brazil: FAEMG Publisher. Franco, C. R., Casarin, N. F. B., Domingues, F. A., & Omoto, C. (2007). Resistência de Brevipalpus phoenicis (Geijskes) (Acari: Tenuipalpidae) a acaricidas inibidores da respiração celular em citros: resistência cruzada e custo adaptativo. Neotropical Entomology, 36, 565–576. Herron, G. A., Edge, V., & Rophail, J. (1993). Clofentezine and hexythiazox resistance in Tetranychus urticae Koch in Australia. Experimental and Applied Acarology, 17, 433–440. Herron, G. A., & Rophail, J. (1993). Genetics of hexythiazox resistance in two spotted spider mite, Tetranychus urticae Koch. Experimental and Applied Acarology, 17, 423–431. Herron, G. A., Rophail, J., & Wilson, L. J. (2004). Chlorfenapir resistance in two-spotted spider mite from Australian cotton. Experimental and Applied Acarology, 31, 131–134. Hollingworth, R. M., & Gadelhak, G. G. (1998). Mechanism of action and toxicity of new pesticides that disrupt oxidative phosphorylation. Reviews in Toxicology, 2, 253–266. Hunt, D. A., & Treacy, M. F. (1998). Pyrrole insecticides: A new class of agriculturally important insecticides functioning as uncouplers of oxidative phosphorylation. In I. Ishaaya & D. Degheele (Eds.), Insecticides with novel modes of action: Mechanism and application (pp. 138–151). Berlin, Germany: Springer. Inoue, K. (1980). Relationship between dicofol resistance and fitness in the citrus red mite, Panonychus citri (McGregor). Journal of Pesticide Science, 5, 165–175. Keena, M. A., & Granett, J. (1990). Genetic analysis of propargite resistance in Pacific spider mites and twospotted spider mite (Acari: Tetranychidae). Journal of Economic Entomology, 83, 655–661. Kim, Y. J., Park, H. M., Cho, J. R., & Ahn, Y. J. (2006). Multiple resistance and biochemical mechanisms of pyridaben resistance in Tetranychus urticae (Acari: Tetranychidae). Journal of Economic Entomology, 99, 954–958. Knight, A. L., Beers, E. H., Hoyt, S. C., & Riedl, H. (1990). Acaricide bioassay with spider mites (Acari: Tetranychidae) on pome fruits: evaluation of methods and selection of discrimination concentrations for resistance monitoring. Journal of Economic Entomology, 83, 1752–1760. Leibee, G. L., & Capinera, J. L. (1985). Pesticide resistance in Florida insects limits management options. Florida Entomologist, 78, 386–399. LeOra Software. (2003). In J. L. Robertson, H. K. Preisler, & R. M. Russel (Eds.), A user’s guide to probit or logit analysis (pp. 7–11). Berkeley, CA, USA: LeOra Software. Nicastro, R. L., Sato, M. E., & da Silva, M. Z. (2010). Milbemectin resistance in Tetranychus urticae (Acari: Tetranychidae): selection, stability and cross-resistance to abamectin. Experimental and Applied Acarology, 50, 231–241. Nicastro, R. L., Sato, M. E., & da Silva, M. Z. (2011). Fitness cost associated with milbemectin resistance in the two-spotted spider mite Tetranychus urticae. International Journal of Pest Management, 57, 223–228. Oliveira, H., Janssen, A., Pallini, A., Venzon, M., & Fadini, M. (2007). A phytoseiid predator from the tropics as potential biological control agent for the spider mite Tetranychus urticae Koch (Acari: Phytoseiidae). Biological Control, 42, 105–109. Raghavendra, K., Barik, T. K., Sharma, P., Bhatt, R. M., Srivastava, H. C., Sreehari, U., et al. (2011). Chlorfenapyr: a new insecticide with novel mode of action can control pyrethroid resistant malaria vectors. Malaria Journal, 10, 16. doi:10.1186/1475-2875-10-16. Rauch, N., & Nauen, R. (2003). Spirodiclofen resistance risk assessment in Tetranychus urticae (Acari: Tetranychidae): a biochemical approach. Pesticide Biochemistry and Physiology, 74, 91–101. Robertson, J. L., Russell, R. M., Preisler, H. K., & Savin, N. E. (2007). Bioassays with arthropods (2nd ed.). Boca Raton, FL, USA: CRC Press. Saito, Y. (1979). Comparative studies on life histories of three species of spider mites (Acari: Tetranychidae). Applied Entomology and Zoology, 14, 83–94. Sato, M. E., da Silva, M. Z., Cangani, K. G., & Raga, A. (2007a). Seleções para resistencia e suscetibilidade, detecção e monitoramento da resistencia de Tetranychus urticae ao acaricida clorfenapir. Bragantia, 66, 89–95. Sato, M. E., da Silva, M. Z., da Silva, R. B., Souza Filho, M. F., & Raga, A. (2009). Monitoramento da resistência de Tetranychus urticae Koch (Acari: Tetranychidae) a abamectin e fenpyroximate em diversas culturas no Estado de São Paulo. Arquivos do Instituto Biológico, 76, 217–223. Sato, M. E., da Silva, M. Z., Raga, A., Cangani, K. G., Veronez, B., & Nicastro, R. L. (2011). Spiromesifen toxicity to the spider mite Tetranychus urticae and selectivity to the predator Neoseiulus californicus. Phytoparasitica, 39, 437–445. Sato, M. E., da Silva, M. Z., Raga, A., & Souza Filho, M. F. (2005). Abamectin resistance in Tetranychus urticae Koch (Acari: Tetranychidae): selection, cross-resistance and stability of resistance. Neotropical Entomology, 34, 991–998. Sato, M. E., da Silva, M. Z., Souza Filho, M. F., Matioli, A. L., & Raga, A. (2007b). Management of Tetranychus urticae (Acari: Tetranychidae) in strawberry fields with Neoseiulus californicus (Acari: Phytoseiidae). Experimental and Applied Acarology, 42, 107–120. Sato, M. E., Miyata, T., da Silva, M., Raga, A., & de Souza Filho, M. F. (2004). Selections for fenpyroximate resistance and susceptibility, and inheritance, cross-resistance and stability of fenpyroximate resistance in Tetranychus urticae Koch (Acari: Tetranychidae). Applied Entomology and Zoology, 39, 293–302. Sheppard, D. C., & Marchiondo, A. A. (1987). Toxicity of diazinon to pyrethroid resistant and susceptible horn flies, Haematobia irritans (L.): laboratory studies and field trials. Journal of Agricultural Entomology, 4, 262–270. SPSS. (2000). SPSS 10.0 for Windows. User’s guide. Chicago, IL, USA: SPSS Inc. Stumpf, N., & Nauen, R. (2001). Cross-resistance, inheritance, and biochemistry of mitochondrial electron transport inhibitor - acaricide resistance in Tetranychus urticae (Acari: Tetranychidae). Journal of Economic Entomology, 94, 1577–1583. Stumpf, N., & Nauen, R. (2002). Biochemical markers linked to abamectin resistance in Tetranychus urticae (Acari: Tetranychidae). Pesticide Biochemistry and Physiology, 72, 111–121. Tomlin, C. D. S. (Ed.). (2000). A world compendium: The pesticide manual (12th ed.). London, UK: British Crop Protection Council. Tsagkarakou, A., Van Leeuwen, T., Khajehali, J., Ilias, A., Grispou, M., Williamson, M. S., et al. (2009). Identification of pyrethroid resistance associated mutations in the para sodium channel of the two-spotted spider mite Tetranychus urticae (Acari: Tetranychidae). Insect Molecular Biology, 18, 583–593. Uesugi, R., Goka, K., & Osakabe, M. H. (2002). Genetic basis of resistances to chlorfenapyr and etoxazole in the twospotted spider mite (Acari: Tetranychidae). Journal of Economic Entomology, 95, 1267–1274. Van Leeuwen, T., Stillatus, V., & Tirry, L. (2004). Genetic analysis and cross-resistance spectrum of a laboratory-selected chlorfenapyr resistance strain of two-spotted spider mite (Acari: Tetranychidae). Experimental and Applied Acarology, 32, 249–261. Van Leeuwen, T., Tirry, L., & Nauen, S. (2006a). Complete maternal inheritance of bifenazate resistance in Tetranychus urticae Koch (Acari: Tetranychidae) and its implications in mode of action considerations. Insect Biochemistry and Molecular Biology, 36, 869–877. Van Leeuwen, T., Van Pottelberge, S., & Tirry, L. (2006b). Biochemical analysis of a chlorfenapir-selected resistant strain of Tetranychus urticae Koch. Pest Management Science, 62, 425–433. Van Leeuwen, T., Vanholme, B., Van Pottelberge, S., Van Nieuwenhuyse, P., Nauen, R., Tirry, L., et al. (2008). Mitochondrial heteroplasmy and the evolution of insecticide resistance: non-Mendelian inheritance in action. Proceedings of the National Academy of Sciences of the United States of America, 105, 5980–5985. Van Pottelberge, S., Van Leuween, T., Khajehali, J., & Tirry, L. (2009a). Genetic and biochemical analysis of a laboratory-selected spirodiclofen-resistant strain of Tetranychus urticae Koch (Acari: Tetranychidae). Pest Management Science, 65, 358–366. Van Pottelberge, S., Van Leeuwen, T., Nauen, R., & Tirry, L. (2009b). Resistance mechanisms to mitochondrial electron transport inhibitors in a field-collected strain of Tetranychus urticae Koch (Acari: Tetranychidae). Bulletin of Entomological Research, 99, 23–31. Yamamoto, I., Kyomura, N., & Takahashi, Y. (1993). Negatively correlated cross resistance: combinations of N-methylcarbamate with N-propylcarbamate or oxidiazolone for green rice leafhopper. Archives of Insect Biochemistry and Physiology, 22, 227–288.