Chitosan-chondroitin based artemether loaded nanoparticles for transdermal drug delivery system

Journal of Drug Delivery Science and Technology - Tập 61 - Trang 102281 - 2021
Sumbal Talib1, Naveed Ahmed1, Dildar Khan1, Gul Majid Khan1, Asim ur Rehman1
1Department of Pharmacy, Quaid-i-Azam University Islamabad 45320, Pakistan

Tài liệu tham khảo

Ho, 2014, Artemisinins: pharmacological actions beyond anti-malarial, Pharmacol. Therapeut., 142, 126, 10.1016/j.pharmthera.2013.12.001 Roth, 2018, Monographs for medicines on WHO's model list of essential medicines, Bull. World Health Organ., 96, 378, 10.2471/BLT.17.205807 Bhatt, 2015, The effect of malaria control on Plasmodium falciparum in Africa between 2000 and 2015, Nature, 526, 207, 10.1038/nature15535 Sahu, 2018, Public health updates (July-November 2018), Indian J Community Fam Med, 4, 74, 10.4103/2395-2113.251446 Tripathi, 2016, Systematic development of optimized SNEDDS of artemether with improved biopharmaceutical and antimalarial potential, Drug Deliv., 23, 3209, 10.3109/10717544.2016.1162876 Resende, 2018, Quantitative determination of the antimalarials artemether and lumefantrine in biological samples: a review, J. Pharmaceut. Biomed. Anal. Lemma, 2011, Adherence to a six-dose regimen of artemether-lumefantrine among uncomplicated Plasmodium falciparum patients in the Tigray Region, Ethiopia, Malar. J., 10, 349, 10.1186/1475-2875-10-349 Mir, 2017, Nanotechnology: from in vivo imaging system to controlled drug delivery, Nanoscale Res Lett, 12, 500, 10.1186/s11671-017-2249-8 Mir, 2020, Microneedle liquid injection system assisted delivery of infection responsive nanoparticles: a promising approach for enhanced site-specific delivery of carvacrol against polymicrobial biofilms-infected wounds, Int. J. Pharm., 587, 119643, 10.1016/j.ijpharm.2020.119643 Sidhaye, 2016, Bio-inspired artemether-loaded human serum albumin nanoparticles for effective control of malaria-infected erythrocytes, Nanomedicine, 11, 2809 Okorji, 2016, Antimalarial drug artemether inhibits neuroinflammation in BV2 microglia through Nrf2-dependent mechanisms, Mol. Neurobiol., 53, 6426, 10.1007/s12035-015-9543-1 Mandawgade, 2008, Development of SMEDDS using natural lipophile: application to β-artemether delivery, Int. J. Pharm., 362, 179, 10.1016/j.ijpharm.2008.06.021 Rinaudo, 2006, Chitin and chitosan: properties and applications, Prog. Polym. Sci., 31, 603, 10.1016/j.progpolymsci.2006.06.001 Umerska, 2017, Design of chondroitin sulfate-based polyelectrolyte nanoplexes: formation of nanocarriers with chitosan and a case study of salmon calcitonin, Carbohydr. Polym., 156, 276, 10.1016/j.carbpol.2016.09.035 Rodrigues, 2015, Biocompatibility and stability of polysaccharide polyelectrolyte complexes aimed at respiratory delivery, Materials, 8, 5647, 10.3390/ma8095268 Rezazadeh, 2019, Incorporation of rosuvastatin-loaded chitosan/chondroitin sulfate nanoparticles into a thermosensitive hydrogel for bone tissue engineering: preparation, characterization, and cellular behavior, Pharmaceut. Dev. Technol., 24, 357, 10.1080/10837450.2018.1484765 Qindeel, 2019, Development of novel pH-sensitive nanoparticles loaded hydrogel for transdermal drug delivery, Drug Dev. Ind. Pharm., 45, 629, 10.1080/03639045.2019.1569031 Fan, 2008, Novel super pH-sensitive nanoparticles responsive to tumor extracellular pH, Carbohydr. Polym., 73, 390, 10.1016/j.carbpol.2007.12.006 Panigrahi, 2002, Formulation and evaluation of pseudolatex transdermal drug delivery system of terbutaline sulphate, Indian J. Pharmaceut. Sci., 64, 79 Kotiyan, 2001, Eudragits: role as crystallization inhibitors in drug-in-adhesive transdermal systems of estradiol, Eur. J. Pharm. Biopharm., 52, 173, 10.1016/S0939-6411(01)00174-6 Tanwar, 2007, Development and evaluation of carvedilol transdermal patches, Acta Pharm., 57, 151, 10.2478/v10007-007-0012-x Arya, 2010, Fast dissolving oral films: an innovative drug delivery system and dosage form, Int. J. Chem. Res., 2, 576 Patel, 2012, Transdermal drug delivery system: a review, Pharma Innov., 1 Prajapati, 2011, Formulation and evaluation of transdermal patch of repaglinide, ISRN Pharm, 2011 Wu, 2019, Interpreting non-linear drug diffusion data: utilizing Korsmeyer-Peppas model to study drug release from liposomes, Eur. J. Pharmaceut. Sci., 138, 105026, 10.1016/j.ejps.2019.105026 Paul, 2011, Elaborations on the Higuchi model for drug delivery, Int. J. Pharm., 418, 13, 10.1016/j.ijpharm.2010.10.037 Rehman, 2020, Role of kinetic models in drug stability, Drug Stab. Chem. Kinet. Springer, 155, 10.1007/978-981-15-6426-0_11 Singhvi, 2011, In-vitro drug release characterization models, Int J Pharm Stud Res, 2, 77 Yang, 2020, Design of a zero-order sustained release PLGA microspheres for palonosetron hydrochloride with high encapsulation efficiency, Int. J. Pharm., 575, 119006, 10.1016/j.ijpharm.2019.119006 Khan, 2020, Development of novel pH-sensitive nanoparticle-based transdermal patch for management of rheumatoid arthritis, Nanomedicine, 15, 603, 10.2217/nnm-2019-0385 Guideline, 2003, Stability testing of new drug substances and products, Q1A (R2), current step, 4, 1 Zargartalebi, 2015, Enhancement of surfactant flooding performance by the use of silica nanoparticles, Fuel, 143, 21, 10.1016/j.fuel.2014.11.040 Gul, 2018, Biodegradable ingredient-based emulgel loaded with ketoprofen nanoparticles, AAPS PharmSciTech, 19, 1869, 10.1208/s12249-018-0997-0 Abdullah, 2016, Chondroitin sulfate-chitosan nanoparticles for ocular delivery of bromfenac sodium: improved permeation, retention, and penetration, Int J Pharm Investig, 6, 96, 10.4103/2230-973X.177823 Tan, 2018, Anthocyanin stabilization by chitosan-chondroitin sulfate polyelectrolyte complexation integrating catechin co-pigmentation, Carbohydr. Polym., 181, 124, 10.1016/j.carbpol.2017.10.034 Harris, 2011, Chitosan nanoparticles and microspheres for the encapsulation of natural antioxidants extracted from Ilex paraguariensis, Carbohydr. Polym., 84, 803, 10.1016/j.carbpol.2010.07.003 Clogston, 2011, 63 Rudzinski, 2016, Targeted delivery of small interfering RNA to colon cancer cells using chitosan and PEGylated chitosan nanoparticles, Carbohydr. Polym., 147, 323, 10.1016/j.carbpol.2016.04.041 Wang, 2015, Detailed structural study of β-artemether: density functional theory (DFT) calculations of infrared, Raman spectroscopy, and vibrational circular dichroism, J. Mol. Struct., 1097, 61, 10.1016/j.molstruc.2015.04.039 Patil, 2018, Preparation and characterization of artemether loaded solid lipid nanoparticles: a 32 factorial design approach, Mater. Technol., 1 Jain, 2015, Optimization of artemether-loaded NLC for intranasal delivery using central composite design, Drug Deliv., 22, 940, 10.3109/10717544.2014.885999 Nnamani, 2014, Development of artemether-loaded nanostructured lipid carrier (NLC) formulation for topical application, Int. J. Pharm., 477, 208, 10.1016/j.ijpharm.2014.10.004 Khatri, 2019, Fabrication, characterization and optimization of artemether loaded PEGylated solid lipid nanoparticles for the treatment of lung cancer, Mater. Res. Express, 6, 10.1088/2053-1591/aaf8a3 Tsai, 2011, Antitumor efficacy of doxorubicin released from crosslinked nanoparticulate chondroitin sulfate/chitosan polyelectrolyte complexes, Macromol. Biosci., 11, 680, 10.1002/mabi.201000456 Santo, 2012, Chitosan–chondroitin sulphate nanoparticles for controlled delivery of platelet lysates in bone regenerative medicine, J Tissue Eng Regen Med, 6, s47, 10.1002/term.1519 Mirzaei, 2017, A new approach to antivenom preparation using chitosan nanoparticles containing echiscarinatus venom as a novel antigen delivery system, Iran. J. Pharm. Res. (IJPR), 16, 858 Haidar, 2008, Protein release kinetics for core–shell hybrid nanoparticles based on the layer-by-layer assembly of alginate and chitosan on liposomes, Biomaterials, 29, 1207, 10.1016/j.biomaterials.2007.11.012 Joshi, 2017, Fabrication and in-vivo evaluation of lipid nanocarriers based transdermal patch of colchicine, J. Drug Deliv. Sci. Technol., 41, 444, 10.1016/j.jddst.2017.08.013 Trombino, 2019, Solid lipid nanoparticles made of trehalose monooleate for cyclosporin-A topic release, J. Drug Deliv. Sci. Technol., 49, 563, 10.1016/j.jddst.2018.12.026 Takeuchi, 2019, Transdermal delivery of 40-nm silk fibroin nanoparticles, Colloids Surf. B Biointerfaces, 175, 564, 10.1016/j.colsurfb.2018.12.012 Obata, 2010, Infrared spectroscopic study of lipid interaction in stratum corneum treated with transdermal absorption enhancers, Int. J. Pharm., 389, 18, 10.1016/j.ijpharm.2010.01.007 Dar, 2018, Sodium stibogluconate loaded nano-deformable liposomes for topical treatment of leishmaniasis: macrophage as a target cell, Drug Deliv., 25, 1595, 10.1080/10717544.2018.1494222 Vaddi, 2002, Terpenes in ethanol: haloperidol permeation and partition through human skin and stratum corneum changes, J. Contr. Release, 81, 121, 10.1016/S0168-3659(02)00057-3