Chitosan-based hydrogels obtained via photoinitiated click polymer IPN reaction
Tài liệu tham khảo
Hoffman, 2012, Hydrogels for biomedical applications, Adv. Drug Deliv. Rev., 64, 18, 10.1016/j.addr.2012.09.010
Pita-López, 2021, Physically cross-linked chitosan-based hydrogels for tissue engineering applications: a state-of-the-art review, Eur. Polym. J., 145, 10.1016/j.eurpolymj.2020.110176
Liu, 2022, Chitosan-based drug delivery systems: current strategic design and potential application in human hard tissue repair, Eur. Polym. J., 166, 10.1016/j.eurpolymj.2021.110979
Kalaithong, 2021, Design and optimization of polymerization parameters of carboxymethyl chitosan and sodium 2-acrylamido-2-methylpropane sulfonate hydrogels as wound dressing materials, Eur. Polym. J., 143, 10.1016/j.eurpolymj.2020.110186
Noferini, 2019, Disentangling polymer network and hydration water dynamics in polyhydroxyethyl methacrylate physical and chemical hydrogels, J. Phys. Chem. C, 123, 19183, 10.1021/acs.jpcc.9b04212
Chaudhary, 2022, Hydrogel based tissue engineering and its future applications in personalized disease modeling and regenerative therapy, Beni-Suef Univ., J. Basic Appl. Sci., 1
Kim, 2020, Antimicrobial hydrogels based on PVA and diphlorethohydroxycarmalol (DPHC) derived from brown alga Ishige okamurae: an in vitro and in vivo study for wound dressing application, Mater. Sci. Eng. C, 107, 10.1016/j.msec.2019.110352
Sánchez-Cid, 2021, Rheological and microstructural evaluation of collagen-based scaffolds crosslinked with fructose, Polymers (Basel), 13, 1, 10.3390/polym13040632
Chen, 2022, Strong fish gelatin hydrogels double crosslinked by transglutaminase and carrageenan, Food Chem., 376, 10.1016/j.foodchem.2021.131873
Zhang, 2021, Preparation of alginate-based biomaterials and their applications in biomedicine, Mar. Drugs, 19, 1, 10.3390/md19050264
Sánchez-Cid, 2022, Novel trends in hydrogel development for biomedical applications: a review, Polymers (Basel), 14, 10.3390/polym14153023
Khan, 2021, Multifunctional Biopolymers-Based Composite Materials for Biomedical Applications: A Systematic Review, ChemistrySelect, 6, 154, 10.1002/slct.202003978
Águila-Almanza, 2021, Facile and green approach in managing sand crab carapace biowaste for obtention of high deacetylation percentage chitosan, J. Environ. Chem. Eng., 9, 10.1016/j.jece.2021.105229
Pellá, 2018, Chitosan-based hydrogels: From preparation to biomedical applications, Carbohydr. Polym., 196, 233, 10.1016/j.carbpol.2018.05.033
Grząbka-Zasadzińska, 2017, Thermal and mechanical properties of chitosan nanocomposites with cellulose modified in ionic liquids, J. Therm. Anal. Calorim., 130, 143, 10.1007/s10973-017-6295-3
Fu, 2018, The chitosan hydrogels: from structure to function, New J. Chem., 42, 17162, 10.1039/C8NJ03482F
Dong, 2012, Thermoresponsive hyperbranched copolymer with multi acrylate functionality for in situ cross-linkable hyaluronic acid composite semi-IPN hydrogel, J. Mater. Sci. - Mater. Med., 23, 25, 10.1007/s10856-011-4496-z
Zhang, 2015, Tough biohydrogels with interpenetrating network structure by bienzymatic crosslinking approach, Eur. Polym. J., 72, 717, 10.1016/j.eurpolymj.2014.12.038
Myung, 2008, Progress in the development of the interpenetrating polymer network hydrogels, Polym. Adv. Technol., 647, 10.1002/pat.1134
Dragan, 2014, Design and applications of interpenetrating polymer network hydrogels. A review, Chem. Eng. J., 243, 572, 10.1016/j.cej.2014.01.065
Kim, 2004, Synthesis and characteristics of interpenetrating polymer network hydrogels composed of alginate and poly(diallydimethylammonium chloride), J. Appl. Polym. Sci., 91, 3705, 10.1002/app.13615
J.L. Aparicio-Collado, J.J. Novoa, J. Molina-Mateo, C. Torregrosa-Cabanilles, Á. Serrano-Aroca, R. Sabater I Serra, Novel semi-interpenetrated polymer networks of poly(3-hydroxybutyrate-co-3-hydroxyvalerate)/poly (vinyl alcohol) with incorporated conductive polypyrrole nanoparticles, Polymers (Basel) 13 (2021) 1–21, doi: 10.3390/polym13010057.
H.C. Kolb, M.G. Finn, K.B. Sharpless, Click chemistry: diverse chemical function from a few good reactions, Angew. Chemie - Int. Ed. 40 (2001) 2004–2021, doi: 10.1002/1521-3773(20010601)40:11<2004::AID-ANIE2004>3.0.CO;2-5.
X. Zuo, S. Wang, K. Zheng, C. Wu, D. Zhang, Z. Dong, T. Wang, F. Xu, J. Guo, Y. Yang, Fluorescent-brightener-mediated thiol-ene reactions under visible-light LED: A green and facile synthesis route to hyperbranched polymers and stimuli-sensitive nanoemulsions, Dye. Pigment. 189 (2021) 109253, doi: 10.1016/j.dyepig.2021.109253.
Hoyle, 2010, Thiol-ene click chemistry, Angew. Chemie - Int. Ed., 49, 1540, 10.1002/anie.200903924
Wang, 2022, Study of double-bonded carboxymethyl chitosan/cysteamine-modified chondroitin sulfate composite dressing for hemostatic application, Eur. Polym. J., 162, 10.1016/j.eurpolymj.2021.110875
Summonte, 2021, Thiolated polymeric hydrogels for biomedical application: cross-linking mechanisms, J. Control. Release, 330, 470, 10.1016/j.jconrel.2020.12.037
Lowe, 2010, Thiol-ene “click” reactions and recent applications in polymer and materials synthesis, Polym. Chem., 1, 17, 10.1039/B9PY00216B
Stichler, 2017, Thiol-ene clickable poly(glycidol) hydrogels for biofabrication, Ann. Biomed. Eng., 45, 273, 10.1007/s10439-016-1633-3
Leichner, 2019, Thiolated polymers: bioinspired polymers utilizing one of the most important bridging structures in nature, Adv. Drug Deliv. Rev., 151–152, 191, 10.1016/j.addr.2019.04.007
Holmes, 2017, Thiol-ene photo-click collagen-PEG hydrogels: impact of water-soluble photoinitiators on cell viability, gelation kinetics and rheological properties, Polymers (Basel), 9, 10.3390/polym9060226
Cramer, 2003, Thiol - ene photopolymerization mechanism and rate limiting step changes for various vinyl functional group chemistries, Macromolecules, 36, 7964, 10.1021/ma034667s
Cramer, 2001, Kinetics of thiol-ene and thiol-acrylate photopolymerizations with real-time Fourier transform infrared, J. Polym. Sci. A Polym. Chem., 39, 3311, 10.1002/pola.1314
Sánchez-Cid, 2021, Applied rheology as tool for the assessment of chitosan hydrogels for regenerative medicine, Polymers (Basel), 13, 10.3390/polym13132189
N. Iglesias, E. Galbis, C. Valencia, M.J. Díaz-Blanco, B. Lacroix, M.V. de-Paz, Biodegradable double cross-linked chitosan hydrogels for drug delivery: Impact of chemistry on rheological and pharmacological performance, Int. J. Biol. Macromol. 165 (2020) 2205–2218, doi: 10.1016/j.ijbiomac.2020.10.006.
N. Iglesias, E. Galbis, C. Valencia, M.V. de-Paz, J.A. Galbis, Reversible pH-sensitive chitosan-based hydrogels. Influence of dispersion composition on rheological properties and sustained drug delivery, Polymers (Basel) 10 (2018), doi: 10.3390/polym10040392.
Mũnoz, 2014, Gelatin hydrogels formed by orthogonal thiol-norbornene photochemistry for cell encapsulation, Biomater. Sci., 2, 1063, 10.1039/C4BM00070F
A. Clark, Structural and Mechanical Properties of Biopolymer Gels, Woodhead, 1991, doi: 10.1533/9781845698331.322.
E. Pretsch, P. Bühlmann, M. Badertscher, Structure Determination of Organic Compounds, fourth ed., Springer, Berlin, 2009, doi: 10.1007/978-3-540-93810-1.
Wiwatsamphan, 2022, Persistently reversible pH-/thermo-responsive chitosan/poly (N-isopropyl acrylamide) hydrogel through clickable crosslinked interpenetrating network, Polym. Degrad. Stab., 198, 10.1016/j.polymdegradstab.2022.109874
Vannozzi, 2017, 3D porous polyurethanes featured by different mechanical properties: characterization and interaction with skeletal muscle cells, J. Mech. Behav. Biomed. Mater., 75, 147, 10.1016/j.jmbbm.2017.07.018
Sánchez-Cid, 2022, Biocompatible and thermoresistant hydrogels based on collagen and chitosan, Polymers (Basel), 14, 1, 10.3390/polym14020272
Zhao, 2022, Dual ionically crosslinked chitosan–based injectable hydrogel as drug delivery system, Colloid Polym. Sci., 300, 1075, 10.1007/s00396-022-05003-y
Wahid, 2019, Development of bacterial cellulose/chitosan based semi-interpenetrating hydrogels with improved mechanical and antibacterial properties, Int. J. Biol. Macromol., 122, 380, 10.1016/j.ijbiomac.2018.10.105
Coşkun, 2022, Formulation of chitosan and chitosan-nanoHAp bioinks and investigation of printability with optimized bioprinting parameters, Int. J. Biol. Macromol., 222, 1453, 10.1016/j.ijbiomac.2022.09.078