Chitosan-based hydrogels obtained via photoinitiated click polymer IPN reaction

Journal of Molecular Liquids - Tập 379 - Trang 121735 - 2023
Pablo Sánchez-Cid1, Alberto Romero1, M.J. Díaz2, M.V. de-Paz3, Víctor Perez-Puyana1
1Departamento de Ingeniería Química, Facultad de Química, Universidad de Sevilla, 41012 Sevilla, Spain
2Pro2TecS—Chemical Process and Product Technology Research Center, Departamento de Ingeniería Química, Campus de “El Carmen”, Universidad de Huelva, 21071 Huelva, Spain
3Departamento de Química Orgánica y Farmacéutica, Facultad de Farmacia, Universidad de Sevilla, 41012 Sevilla, Spain

Tài liệu tham khảo

Hoffman, 2012, Hydrogels for biomedical applications, Adv. Drug Deliv. Rev., 64, 18, 10.1016/j.addr.2012.09.010 Pita-López, 2021, Physically cross-linked chitosan-based hydrogels for tissue engineering applications: a state-of-the-art review, Eur. Polym. J., 145, 10.1016/j.eurpolymj.2020.110176 Liu, 2022, Chitosan-based drug delivery systems: current strategic design and potential application in human hard tissue repair, Eur. Polym. J., 166, 10.1016/j.eurpolymj.2021.110979 Kalaithong, 2021, Design and optimization of polymerization parameters of carboxymethyl chitosan and sodium 2-acrylamido-2-methylpropane sulfonate hydrogels as wound dressing materials, Eur. Polym. J., 143, 10.1016/j.eurpolymj.2020.110186 Noferini, 2019, Disentangling polymer network and hydration water dynamics in polyhydroxyethyl methacrylate physical and chemical hydrogels, J. Phys. Chem. C, 123, 19183, 10.1021/acs.jpcc.9b04212 Chaudhary, 2022, Hydrogel based tissue engineering and its future applications in personalized disease modeling and regenerative therapy, Beni-Suef Univ., J. Basic Appl. Sci., 1 Kim, 2020, Antimicrobial hydrogels based on PVA and diphlorethohydroxycarmalol (DPHC) derived from brown alga Ishige okamurae: an in vitro and in vivo study for wound dressing application, Mater. Sci. Eng. C, 107, 10.1016/j.msec.2019.110352 Sánchez-Cid, 2021, Rheological and microstructural evaluation of collagen-based scaffolds crosslinked with fructose, Polymers (Basel), 13, 1, 10.3390/polym13040632 Chen, 2022, Strong fish gelatin hydrogels double crosslinked by transglutaminase and carrageenan, Food Chem., 376, 10.1016/j.foodchem.2021.131873 Zhang, 2021, Preparation of alginate-based biomaterials and their applications in biomedicine, Mar. Drugs, 19, 1, 10.3390/md19050264 Sánchez-Cid, 2022, Novel trends in hydrogel development for biomedical applications: a review, Polymers (Basel), 14, 10.3390/polym14153023 Khan, 2021, Multifunctional Biopolymers-Based Composite Materials for Biomedical Applications: A Systematic Review, ChemistrySelect, 6, 154, 10.1002/slct.202003978 Águila-Almanza, 2021, Facile and green approach in managing sand crab carapace biowaste for obtention of high deacetylation percentage chitosan, J. Environ. Chem. Eng., 9, 10.1016/j.jece.2021.105229 Pellá, 2018, Chitosan-based hydrogels: From preparation to biomedical applications, Carbohydr. Polym., 196, 233, 10.1016/j.carbpol.2018.05.033 Grząbka-Zasadzińska, 2017, Thermal and mechanical properties of chitosan nanocomposites with cellulose modified in ionic liquids, J. Therm. Anal. Calorim., 130, 143, 10.1007/s10973-017-6295-3 Fu, 2018, The chitosan hydrogels: from structure to function, New J. Chem., 42, 17162, 10.1039/C8NJ03482F Dong, 2012, Thermoresponsive hyperbranched copolymer with multi acrylate functionality for in situ cross-linkable hyaluronic acid composite semi-IPN hydrogel, J. Mater. Sci. - Mater. Med., 23, 25, 10.1007/s10856-011-4496-z Zhang, 2015, Tough biohydrogels with interpenetrating network structure by bienzymatic crosslinking approach, Eur. Polym. J., 72, 717, 10.1016/j.eurpolymj.2014.12.038 Myung, 2008, Progress in the development of the interpenetrating polymer network hydrogels, Polym. Adv. Technol., 647, 10.1002/pat.1134 Dragan, 2014, Design and applications of interpenetrating polymer network hydrogels. A review, Chem. Eng. J., 243, 572, 10.1016/j.cej.2014.01.065 Kim, 2004, Synthesis and characteristics of interpenetrating polymer network hydrogels composed of alginate and poly(diallydimethylammonium chloride), J. Appl. Polym. Sci., 91, 3705, 10.1002/app.13615 J.L. Aparicio-Collado, J.J. Novoa, J. Molina-Mateo, C. Torregrosa-Cabanilles, Á. Serrano-Aroca, R. Sabater I Serra, Novel semi-interpenetrated polymer networks of poly(3-hydroxybutyrate-co-3-hydroxyvalerate)/poly (vinyl alcohol) with incorporated conductive polypyrrole nanoparticles, Polymers (Basel) 13 (2021) 1–21, doi: 10.3390/polym13010057. H.C. Kolb, M.G. Finn, K.B. Sharpless, Click chemistry: diverse chemical function from a few good reactions, Angew. Chemie - Int. Ed. 40 (2001) 2004–2021, doi: 10.1002/1521-3773(20010601)40:11<2004::AID-ANIE2004>3.0.CO;2-5. X. Zuo, S. Wang, K. Zheng, C. Wu, D. Zhang, Z. Dong, T. Wang, F. Xu, J. Guo, Y. Yang, Fluorescent-brightener-mediated thiol-ene reactions under visible-light LED: A green and facile synthesis route to hyperbranched polymers and stimuli-sensitive nanoemulsions, Dye. Pigment. 189 (2021) 109253, doi: 10.1016/j.dyepig.2021.109253. Hoyle, 2010, Thiol-ene click chemistry, Angew. Chemie - Int. Ed., 49, 1540, 10.1002/anie.200903924 Wang, 2022, Study of double-bonded carboxymethyl chitosan/cysteamine-modified chondroitin sulfate composite dressing for hemostatic application, Eur. Polym. J., 162, 10.1016/j.eurpolymj.2021.110875 Summonte, 2021, Thiolated polymeric hydrogels for biomedical application: cross-linking mechanisms, J. Control. Release, 330, 470, 10.1016/j.jconrel.2020.12.037 Lowe, 2010, Thiol-ene “click” reactions and recent applications in polymer and materials synthesis, Polym. Chem., 1, 17, 10.1039/B9PY00216B Stichler, 2017, Thiol-ene clickable poly(glycidol) hydrogels for biofabrication, Ann. Biomed. Eng., 45, 273, 10.1007/s10439-016-1633-3 Leichner, 2019, Thiolated polymers: bioinspired polymers utilizing one of the most important bridging structures in nature, Adv. Drug Deliv. Rev., 151–152, 191, 10.1016/j.addr.2019.04.007 Holmes, 2017, Thiol-ene photo-click collagen-PEG hydrogels: impact of water-soluble photoinitiators on cell viability, gelation kinetics and rheological properties, Polymers (Basel), 9, 10.3390/polym9060226 Cramer, 2003, Thiol - ene photopolymerization mechanism and rate limiting step changes for various vinyl functional group chemistries, Macromolecules, 36, 7964, 10.1021/ma034667s Cramer, 2001, Kinetics of thiol-ene and thiol-acrylate photopolymerizations with real-time Fourier transform infrared, J. Polym. Sci. A Polym. Chem., 39, 3311, 10.1002/pola.1314 Sánchez-Cid, 2021, Applied rheology as tool for the assessment of chitosan hydrogels for regenerative medicine, Polymers (Basel), 13, 10.3390/polym13132189 N. Iglesias, E. Galbis, C. Valencia, M.J. Díaz-Blanco, B. Lacroix, M.V. de-Paz, Biodegradable double cross-linked chitosan hydrogels for drug delivery: Impact of chemistry on rheological and pharmacological performance, Int. J. Biol. Macromol. 165 (2020) 2205–2218, doi: 10.1016/j.ijbiomac.2020.10.006. N. Iglesias, E. Galbis, C. Valencia, M.V. de-Paz, J.A. Galbis, Reversible pH-sensitive chitosan-based hydrogels. Influence of dispersion composition on rheological properties and sustained drug delivery, Polymers (Basel) 10 (2018), doi: 10.3390/polym10040392. Mũnoz, 2014, Gelatin hydrogels formed by orthogonal thiol-norbornene photochemistry for cell encapsulation, Biomater. Sci., 2, 1063, 10.1039/C4BM00070F A. Clark, Structural and Mechanical Properties of Biopolymer Gels, Woodhead, 1991, doi: 10.1533/9781845698331.322. E. Pretsch, P. Bühlmann, M. Badertscher, Structure Determination of Organic Compounds, fourth ed., Springer, Berlin, 2009, doi: 10.1007/978-3-540-93810-1. Wiwatsamphan, 2022, Persistently reversible pH-/thermo-responsive chitosan/poly (N-isopropyl acrylamide) hydrogel through clickable crosslinked interpenetrating network, Polym. Degrad. Stab., 198, 10.1016/j.polymdegradstab.2022.109874 Vannozzi, 2017, 3D porous polyurethanes featured by different mechanical properties: characterization and interaction with skeletal muscle cells, J. Mech. Behav. Biomed. Mater., 75, 147, 10.1016/j.jmbbm.2017.07.018 Sánchez-Cid, 2022, Biocompatible and thermoresistant hydrogels based on collagen and chitosan, Polymers (Basel), 14, 1, 10.3390/polym14020272 Zhao, 2022, Dual ionically crosslinked chitosan–based injectable hydrogel as drug delivery system, Colloid Polym. Sci., 300, 1075, 10.1007/s00396-022-05003-y Wahid, 2019, Development of bacterial cellulose/chitosan based semi-interpenetrating hydrogels with improved mechanical and antibacterial properties, Int. J. Biol. Macromol., 122, 380, 10.1016/j.ijbiomac.2018.10.105 Coşkun, 2022, Formulation of chitosan and chitosan-nanoHAp bioinks and investigation of printability with optimized bioprinting parameters, Int. J. Biol. Macromol., 222, 1453, 10.1016/j.ijbiomac.2022.09.078