Vật liệu chức năng dựa trên chitosan cho việc phục hồi vết thương trên da: Cơ chế và ứng dụng

Peipei Feng1, Yang Luo1, Chunhai Ke2, Haofeng Qiu1, Wei Wang1, Yabin Zhu1, Ruixia Hou1, Long Xu3, Songze Wu4
1School of Medicine, Ningbo University, Ningbo, China
2Lihuili Hospital, Affiliated Hospital of Ningbo University, Ningbo, China
3School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, China
4Ningbo Baoting Biotechnology Co., Ltd., Ningbo, China

Tóm tắt

Vết thương trên da không chỉ gây ra đau đớn vật lý cho bệnh nhân mà còn là gánh nặng kinh tế cho xã hội. Cần tìm kiếm một phương pháp hiệu quả để thúc đẩy sự phục hồi da. Hydrogel được coi là băng vết thương hiệu quả. Chúng có nhiều đặc tính độc đáo như tương thích sinh học, khả năng phân hủy sinh học, khả năng hấp thụ và giữ nước cao, v.v., do đó chúng là những vật liệu ứng cử triển vọng cho việc chữa lành vết thương. Chitosan là một vật liệu sinh học dạng polymer thu được từ quá trình deacetyl hóa chitins. Với các đặc tính như dễ dàng thu nhận, hoạt tính kháng khuẩn và cầm máu, cũng như khả năng thúc đẩy tái tạo da, các băng vết thương chức năng giống như hydrogel (đại diện bởi chitosan và các dẫn xuất của nó) đã nhận được sự quan tâm rộng rãi về hiệu quả và cơ chế của chúng trong việc thúc đẩy phục hồi vết thương trên da. Trong bài đánh giá này, chúng tôi đã thảo luận sâu về các cơ chế mà các vật liệu chức năng dựa trên chitosan thúc đẩy cầm máu, chống viêm, sự phát triển của mô hạt trong việc sửa chữa vết thương. Chúng tôi cũng cung cấp thông tin mới nhất về các ứng dụng của những vật liệu này trong điều trị vết thương. Ngoài ra, chúng tôi tóm tắt các phương pháp để tăng cường ưu điểm và duy trì bản chất vốn có của chitosan thông qua việc kết hợp các thành phần hóa học khác, các phân tử sinh học hoạt động và các chất khác vào các hydrogel.

Từ khóa


Tài liệu tham khảo

Abd El-Hack, 2020, Antimicrobial and antioxidant properties of chitosan and its derivatives and their applications: a review., Int. J. Biol. Macromol., 164, 2726, 10.1016/j.ijbiomac.2020.08.153

Bagher, 2020, Wound healing with alginate/chitosan hydrogel containing hesperidin in rat model., J. Drug Deliv. Sci. Technol., 55, 10.1016/j.jddst.2019.101379

Barrientos, 2008, Perspective article: growth factors and cytokines in wound healing., Wound Repair Regenerat., 16, 585, 10.1111/j.1524-475X.2008.00410.x

Bernkop-Schnürch, 2018, Strategies to overcome the polycation dilemma in drug delivery., Adv. Drug Deliv. Rev., 13, 62, 10.1016/j.addr.2018.07.017

Blacklow, 2019, Bioinspired mechanically active adhesive dressings to accelerate wound closure., Sci. Adv., 5, 10.1126/sciadv.aaw3963

Burzynski, 2019, The coagulation and immune systems are directly linked through the activation of interleukin-1α by thrombin., Immunity, 50, 1033, 10.1016/j.immuni.2019.03.003

Cheng, 2017, Sustained release of adipose-derived stem cells by thermosensitive chitosan/gelatin hydrogel for therapeutic angiogenesis., Acta Biomater., 51, 258, 10.1016/j.actbio.2017.01.060

Clifton, 2015, Effect of divalent cation removal on the structure of gram-negative bacterial outer membrane models., Langmuir, 31, 404, 10.1021/la504407v

Fang, 2016, Bone marrow derived mesenchymal stem cells inhibit the proliferative and profibrotic phenotype of hypertrophic scar fibroblasts and keloid fibroblasts through paracrine signaling., J. Dermatol. Sci., 83, 95, 10.1016/j.jdermsci.2016.03.003

Farhadihosseinabadi, 2019, Crosstalk between chitosan and cell signaling pathways., Cell. Mol. Life Sci., 76, 2697, 10.1007/s00018-019-03107-3

Fukasawa, 1992, The hemostatic effect of deacetylated chitin membrane on peritoneal injury in rabbit model., Surg. Today, 22, 333, 10.1007/BF00308742

Galván Márquez, 2013, Disruption of protein synthesis as antifungal mode of action by chitosan., Int. J. Food Microbiol., 164, 108, 10.1016/j.ijfoodmicro.2013.03.025

Golmohammadi, 2020, Synergistic antibacterial activity and wound healing properties of selenium-chitosan-mupirocin nanohybrid system: an in vivo study on rat diabetic staphylococcus aureus wound infection model., Sci. Rep., 10, 10.1038/s41598-020-59510-5

Guilak, 2006, Clonal analysis of the differentiation potential of human adipose-derived adult stem cells., J. Cell. Physiol., 206, 229, 10.1002/jcp.20463

Guo, 2020, Nanobiohybrids: materials approaches for bioaugmentation., Sci. Adv., 6, 10.1126/sciadv.aaz0330

Haddadi, 2017, Evaluation of the effect of hesperidin on vascular endothelial growth factor gene expression in rat skin animal models following cobalt-60 gamma irradiation., J. Cancer Res. Therapeut., 14, S1098, 10.4103/0973-1482.202892

He, 2020, Conductive adhesive self-healing nanocomposite hydrogel wound dressing for photothermal therapy of infected full-thickness skin wounds., Chem. Eng. J., 394, 10.1016/j.cej.2020.124888

He, 2013, Positive charge of chitosan retards blood coagulation on chitosan films., J. Biomater. Appl., 27, 1032, 10.1177/0885328211432487

Helander, 2001, Chitosan disrupts the barrier properties of the outer membrane of Gram-negative bacteria., Int. J. Food Microbiol., 71, 235, 10.1016/S0168-1605(01)00609-2

Howling, 2001, The effect of chitin and chitosan on the proliferation of human skin fibroblasts and keratinocytes in vitro., Biomaterials, 22, 2959, 10.1016/S0142-9612(01)00042-4

Huang, 2018, On-Demand dissolvable self-healing hydrogel based on carboxymethyl chitosan and cellulose nanocrystal for deep partial thickness burn wound healing., ACS Appl. Mater. Interfaces, 10, 41076, 10.1021/acsami.8b14526

Jackson, 2005, PI 3-kinase p110β: a new target for antithrombotic therapy., Nat. Med., 11, 507, 10.1038/nm1232

Jayaramudu, 2019, Chitosan capped copper oxide/copper nanoparticles encapsulated microbial resistant nanocomposite films., Int. J. Biol. Macromol., 128, 499, 10.1016/j.ijbiomac.2019.01.145

Jayaramudu, 2020, Chitosan-pluronic based Cu nanocomposite hydrogels for prototype antimicrobial applications., Int. J. Biol. Macromol., 143, 825, 10.1016/j.ijbiomac.2019.09.143

Jiang, 2020, Controlled release of silver ions from AgNPs using a hydrogel based on konjac glucomannan and chitosan for infected wounds., Int. J. Biol. Macromol., 149, 148, 10.1016/j.ijbiomac.2020.01.221

Kassem, 2019, Antibacterial activity of chitosan nano-composites and carbon nanotubes: a review., Sci. Total Environ., 668, 566, 10.1016/j.scitotenv.2019.02.446

Khan, 2018, A review on recent advances in chitosan based composite for hemostatic dressings., Int. J. Biol. Macromol., 124, 138, 10.1016/j.ijbiomac.2018.11.045

Khan, 2019, A review on recent advances in chitosan based composite for hemostatic dressings., Int. J. Biol. Macromol., 124, 138, 10.1016/j.ijbiomac.2018.11.045

Khorasani, 2018, Incorporation of ZnO nanoparticles into heparinised polyvinyl alcohol/chitosan hydrogels for wound dressing application., Int. J. Biol. Macromol., 114, 1203, 10.1016/j.ijbiomac.2018.04.010

Kumar, 2020, Synthesis of physically crosslinked PVA/Chitosan loaded silver nanoparticles hydrogels with tunable mechanical properties and antibacterial effects., Int. J. Biol. Macromol., 149, 1262, 10.1016/j.ijbiomac.2020.02.048

Kumar, 2020, Sprayed in-situ synthesis of polyvinyl alcohol/chitosan loaded silver nanocomposite hydrogel for improved antibacterial effects., Int. J. Biol. Macromol., 145, 950, 10.1016/j.ijbiomac.2019.09.186

Lambers, 2006, Natural skin surface pH is on average below 5, which is beneficial for its resident flora., Int. J. Cosmet. Sci., 28, 359, 10.1111/j.1467-2494.2006.00344.x

Lee, 2019, Microporous methacrylated glycol chitosan-montmorillonite nanocomposite hydrogel for bone tissue engineering., Nat. Commun., 10, 10.1038/s41467-019-11511-3

Leonhardt, 2019, Absorbable hemostatic hydrogels comprising composites of sacrificial templates and honeycomb-like nanofibrous mats of chitosan., Nat. Commun., 10, 10.1038/s41467-019-10290-1

Li, 2020, Two-Pronged strategy of biomechanically active and biochemically multifunctional hydrogel wound dressing to accelerate wound closure and wound healing., Chem. Mater., 32, 9937, 10.1021/acs.chemmater.0c02823

Li, 2019, Supramolecular antibacterial materials for combatting antibiotic resistance., Adv. Mater., 31, 10.1002/adma.201805092

Li, 2015, Synthesis and characterization of chitosan derivatives with dual-antibacterial functional groups., Int. J. Biol. Macromol., 75, 378, 10.1016/j.ijbiomac.2015.01.056

Lord, 2011, The modulation of platelet adhesion and activation by chitosan through plasma and extracellular matrix proteins., Biomaterials, 32, 6655, 10.1016/j.biomaterials.2011.05.062

Mai, 2020, Smart hydrogel-based DVDMS/bFGF nanohybrids for antibacterial phototherapy with multiple damaging sites and accelerated wound healing., ACS Appl. Mater. Interfaces., 12, 10156, 10.1021/acsami.0c00298

Mohan, 2020, Recent insights into the extraction, characterization, and bioactivities of chitin and chitosan from insects., Trends Food Sci. Technol., 105, 17, 10.1016/j.tifs.2020.08.016

Mutluoglu, 2013, Topical oxygen for chronic wounds: a PRO/CON debate., J. Am. College Clin. Wound Special., 5, 61, 10.1016/j.jccw.2014.12.003

Nguyen, 2018, In vitro and in vivo acute response towards injectable thermosensitive chitosan/TEMPO-oxidized cellulose nanofiber hydrogel., Carbohydrate Polymers, 180, 246, 10.1016/j.carbpol.2017.10.032

Ong, 2008, Development of a chitosan-based wound dressing with improved hemostatic and antimicrobial properties., Biomaterials, 29, 4323, 10.1016/j.biomaterials.2008.07.034

Patil, 2019, Fluorinated methacrylamide chitosan hydrogel dressings improve regenerated wound tissue quality in diabetic wound healing., Adv. Wound Care(New Rochelle)., 8, 374, 10.1089/wound.2018.0887

Qu, 2019, A thermosensitive RGD-modified hydroxybutyl chitosan hydrogel as a 3D scaffold for BMSCs culture on keloid treatment., Int. J. Biol. Macromol., 125, 78, 10.1016/j.ijbiomac.2018.12.058

Qu, 2018, Antibacterial adhesive injectable hydrogels with rapid self-healing, extensibility and compressibility as wound dressing for joints skin wound healing., Biomaterials, 183, 185, 10.1016/j.biomaterials.2018.08.044

Shi, 2019, Bioactuators based on stimulus-responsive hydrogels and their emerging biomedical applications., NPG Asia Mater., 11, 10.1038/s41427-019-0165-3

Soriano-Ruiz, 2020, Design and evaluation of a multifunctional thermosensitive poloxamer-chitosan-hyaluronic acid gel for the treatment of skin burns., Int. J. Biol. Macromol., 142, 412, 10.1016/j.ijbiomac.2019.09.113

Su, 2020, TGF-β orchestrates fibrogenic and developmental EMTs via the RAS effector RREB1., Nature, 577, 566, 10.1038/s41586-019-1897-5

Sun, 2018, Reinforcement of thermoplastic chitosan hydrogel using chitin whiskers optimized with response surface methodology., Carbohydr. Polym., 189, 280, 10.1016/j.carbpol.2018.01.083

Verlee, 2017, Recent developments in antibacterial and antifungal chitosan and its derivatives., Carbohydr. Polym., 164, 268, 10.1016/j.carbpol.2017.02.001

Wang, 2008, Preparation and blood coagulation evaluation of chitosan microspheres., J. Mater. Sci. Mater. Med., 19, 1371, 10.1007/s10856-007-3243-y

Wang, 2016, Preparation and properties of a novel thermo-sensitive hydrogel based on chitosan/hydroxypropyl methylcellulose/glycerol., Int. J. Biol. Macromol., 93, 775, 10.1016/j.ijbiomac.2016.09.038

Wang, 2020, A self-adapting hydrogel based on chitosan/oxidized konjac glucomannan/AgNPs for repairing irregular wounds., Biomater. Sci., 8, 1910, 10.1039/C9BM01635J

Wang, 2019, Evaluation of chitosan-based dressings in a swine model of artery-injury-related shock., Sci. Rep., 9, 10.1038/s41598-019-51208-7

Wang, 2017, Novel biomaterial strategies for controlled growth factor delivery for biomedical applications., NPG Asia Mater., 9, 10.1038/am.2017.171

Xing, , Effect of oleoyl-chitosan nanoparticles as a novel antibacterial dispersion system on viability, membrane permeability and cell morphology of Escherichia coli and Staphylococcus aureus., Carbohydr. Polym., 76, 17, 10.1016/j.carbpol.2008.09.016

Xing, , Oleoyl-chitosan nanoparticles inhibits Escherichia coli and Staphylococcus aureus by damaging the cell membrane and putative binding to extracellular or intracellular targets., Int. J. Food Microbiol., 132, 127, 10.1016/j.ijfoodmicro.2009.04.013

Xu, 2018, Self-healing chitosan/vanillin hydrogels based on Schiff-base bond/hydrogen bond hybrid linkages., Polym. Test., 66, 155, 10.1016/j.polymertesting.2018.01.016

Xuan, 2020, Silver crosslinked injectable bFGF-eluting supramolecular hydrogels speed up infected wound healing., J. Mater. Chem. B., 8, 1359, 10.1039/C9TB02331C

Yang, 2020, Umbilical cord-derived mesenchymal stem cell-derived exosomes combined pluronic F127 hydrogel promote chronic diabetic wound healing and complete skin regeneration., Int. J. Nanomed., 15, 5911, 10.2147/IJN.S249129

Yoo, 2018, Visible light-cured glycol chitosan hydrogel dressing containing endothelial growth factor and basic fibroblast growth factor accelerates wound healing in vivo., J. Ind. Eng. Chem., 67, 365, 10.1016/j.jiec.2018.07.009

Zahid, , Nitric oxide releasing chitosan-poly (vinyl alcohol) hydrogel promotes angiogenesis in chick embryo model., Int. J. Biol. Macromol., 136, 901, 10.1016/j.ijbiomac.2019.06.136

Zahid, , Reactive nitrogen species releasing hydrogel for enhanced wound healing., Annu. Int. Conf. IEEE Eng. Med. Biol. Soc., 2019, 3939, 10.1109/embc.2019.8856469

Zhang, 2020, Injectable self-healing supramolecular hydrogels with conductivity and photo-thermal antibacterial activity to enhance complete skin regeneration., Chem. Eng. J., 400, 10.1016/j.cej.2020.125994

Zhang, 2019, Novel lignin–chitosan–PVA composite hydrogel for wound dressing., Mater. Sci. Eng. C., 104, 10.1016/j.msec.2019.110002

Zhu, 2018, pH sensitive methacrylated chitosan hydrogels with tunable physical and chemical properties., Biochem. Eng. J., 132, 38, 10.1016/j.bej.2017.12.012