Chitinolytic activity of phylogenetically diverse Bacillus cereus sensu lato from natural environments
Tài liệu tham khảo
Barboza-Corona, 1999, Selection of chitinolytic strains of Bacillus thuringiensis, Biotechnol. Lett., 21, 1125, 10.1023/A:1005626208193
Barboza-Corona, 2003, Cloning, sequencing, and expression of the chitinase gene chiA74 from Bacillus thuringiensis, Appl. Environ. Microbiol., 69, 1023, 10.1128/AEM.69.2.1023-1029.2003
Barboza-Corona, 2008, Molecular and biochemical characterization of an endochitinase (ChiA-HD73) from Bacillus thuringiensis subsp. kurstaki HD-73, Mol. Biotechnol., 39, 29, 10.1007/s12033-007-9025-4
Casique-Arroyo, 2007, Development of a recombinant strain of Bacillus thuringiensis subsp. kurstaki HD-73 that produces the endochitinase ChiA74, Antonie Van Leeuwenhoek, 92, 1, 10.1007/s10482-006-9127-1
Castiaux, 2014, Diversity of pulsed-field gel electrophoresis patterns of cereulide-producing isolates of Bacillus cereus and Bacillus weihenstephanensis, FEMS Microbiol. Lett., 353, 124, 10.1111/1574-6968.12423
Ceuppens, 2013, Diversity of Bacillus cereus group strains in reflected in their broad range of pathogenicity and diverse ecological lifestyles, FEMS Microbiol. Ecol., 84, 433, 10.1111/1574-6941.12110
Cohan, 2017, Transmission in the origins of bacterial diversity from ecotypes to phyla, Microbiol. Spectr., 10.1128/microbiolspec.MTBP-0014-2016
Cohan, 2008, The origins of ecological diversity in prokaryotes, Curr. Biol., 18, 1024, 10.1016/j.cub.2008.09.014
Crooks, 2004, WebLogo: a sequence logo generator, Genome Res., 14, 1188, 10.1101/gr.849004
Drewnowska, 2013, Eco-genetic structure of Bacillus cereus sensu lato populations from different environments in Northeastern Poland, PLoS One, 8, e80175, 10.1371/journal.pone.0080175
Driss, 2005, Molecular characterization of novel chitinase from Bacillus thuringiensis subsp. kurstaki, J. Appl. Microbiol., 99, 945, 10.1111/j.1365-2672.2005.02639.x
Feugeas, 2016, Links between transcription, environmental adaptation and gene variability in Eschericia coli: correlations between gene expression and gene variability reflect growth efficiencies, Mol. Biol. Evol., 33, 2515, 10.1093/molbev/msw105
Fiedoruk, 2017, Ribosomal background of the Bacillus cereus group thermotypes, Sci. Rep., 7, 46430, 10.1038/srep46430
Frederiksen, 2013, Bacterial chitinases and chitin-binding proteins as virulence factors, Microbiology, 159, 833, 10.1099/mic.0.051839-0
Fu, 2016, Purification and biochemical characterization of novel acidic chitinase from Paenibacillus barengoltzii, Int. J. Biol. Macromol., 91, 973, 10.1016/j.ijbiomac.2016.06.050
Fuente-Salcido, 2016, The endochitinase ChiA of Bacillus thuringiensis subsp. tenebrionis DSM-2803 and its potential use to control the phytopathogen Colletotichum gleosporioides, MicrobiologyOpen, 5, 819, 10.1002/mbo3.372
Gaber, 2016, Characterization of a chitinase from the cellulolytic ectinomycete Thermobifida fusca, Biochim. Biophys. Acta, 1864, 1253, 10.1016/j.bbapap.2016.04.010
Ghorbel-Bellaaj, 2012, Optimization of protease and chitinase production by Bacillus cereus SV1 on shrimp shell waste using statistical experimental design. Biochemical and molecular characterization of the chitinase, Ann. Microbiol., 62, 255, 10.1007/s13213-011-0371-x
Guinebretière, 2013, Bacillus cytotoxicus sp. nov. is a novel termotolerant species of the Bacillus cereus group occasionally associated with food poisoning, Int. J. Syst. Evol. Microbiol., 63, 31, 10.1099/ijs.0.030627-0
Guinebretière, 2008, Ecological diversification in the Bacillus cereus group, Environ. Microbiol., 10, 851, 10.1111/j.1462-2920.2007.01495.x
Hammami, 2013, Partial purification and characterization of chiIO8, a novel antifungal chitinase produced by Bacillus cereus IO8, J. Appl. Microbiol., 115, 358, 10.1111/jam.12242
Hsieh, 2010, Crystal structures of Bacillus cereus NCTU2 chitinase complexes with chitooligomers reveal novel substrate binding for catalysis. A chitinase without chitin binding and insertion domains, J. Biol. Chem., 285, 31603, 10.1074/jbc.M110.149310
Jang, 2004, Physiochemical characterization of α-chitin, β-chitin, and γ-chitin separated from natural resources, J. Polym. Sci. Pol. Chem., 42, 3423, 10.1002/pola.20176
Jiménez, 2013, Complete genome sequence of Bacillus toyonensis BCT-7112T, the active ingredient of the feed additive preparation Toyocerin, Genome Announc., 1, 10.1128/genomeA.01080-13
Juárez-Hernández, 2019, The crystal structure of the chitinase ChiA74 of Bacillus thuringiensis has a multidomain assembly, Sci. Rep., 9, 2591, 10.1038/s41598-019-39464-z
Juárez-Hernández, 2015, Bacillus thuringiensis subsp. israelensis producing endochitinase ChiA74Δsp inclusions and its improved activity against Aedes aegypti, J. Appl. Microbiol., 119, 1692, 10.1111/jam.12962
Kaya, 2017, On chemistry of γ-chitin, Carbohydr. Polym., 176, 177, 10.1016/j.carbpol.2017.08.076
Kumar, 2016, MEGA7: Molecular Evolutionary Genetics Analysis version 7.0 for bigger datasets, Mol. Biol. Evol., 33, 1870, 10.1093/molbev/msw054
Larkin, 2007, Clustal W and Clstal X version 2.0, Bioinformatics, 23, 2947, 10.1093/bioinformatics/btm404
Letunic, 2018, 20 years of the SMART protein domain annotation resource, Nucleic Acids Res., 46, 493, 10.1093/nar/gkx922
Librado, 2009, DnaSP v5: a software for comprehensive analysis of DNA polymorphism data, Bioinformatics, 25, 1451, 10.1093/bioinformatics/btp187
Mander, 2016, Purification and characterization of chitinase showing antifungal and biodegradation properties obtained from Streptomyces anulatus SC242, Arch. Pharm. Res., 39, 878, 10.1007/s12272-016-0747-3
Manjeet, 2013, Bacterial chitin binding proteins show differential substrate binding and synergy with chitinases, Microbiol. Res., 168, 461, 10.1016/j.micres.2013.01.006
Martínez-Zavala, 2020, Chitinases of Bacillus thuringiensis: phylogeny, modular structure, and applied potentials, Front. Microbiol., 10, 3032, 10.3389/fmicb.2019.03032
Nei, 1986, Simple methods for estimating the numbers of synonymous and nonsynonymous nucleotide substitutions, Mol. Biol. Evol., 3, 418
Oyeleye, 2018, Chitinase: diversity, limitations, and trends in engineering for suitable applications, Biosci. Rep., 38, 10.1042/BSR20180323
Pfaffl, 2001, A new mathematical model for relative quantification in real-time RT-PCR, Nucleic Acids Res., 29, e45, 10.1093/nar/29.9.e45
R Development Core Team, 2008
Rebekić, 2015, Pearson’s or Spearman’s correlation coefficient—which one to use?, Poljoprivreda, 21, 47, 10.18047/poljo.21.2.8
Reiter, 2011, Reference genes for quantitative, reverse-transcription PCR in Bacillus cereus group strains throughout the bacterial life cycle, J. Microbiol. Methods, 86, 210, 10.1016/j.mimet.2011.05.006
Ruiz-Sanchez, 2005, Molecular cloning and purification of an endochitinase from Serratia marcescens (Nima), Mol. Biotechnol., 31, 103, 10.1385/MB:31:2:103
Smucker, 2010, Forms and functions of meso and micro-nichces of carbon within soil aggregates, J. Nematol., 42, 84
Vaikuntapu, 2016, A new chitinase-D from a plant growth promoting Serratia marcescens GPS5 for enzymatic conversion of chitin, Bioresour. Technol., 220, 200, 10.1016/j.biortech.2016.08.055
Waldeck, 2006, Isolation and molecular characterization of chitinase-deficient Bacillus licheniformis strains capable of deproteinization of shrimp shell waste to obtain highly viscous chitin, Appl. Environ. Microbiol., 72, 7879, 10.1128/AEM.00938-06
Wang, 2016, Characterization of a cold-adapted and salt-tolerant exo-chitinase (ChiC) from Pseudoalteromonas sp. DL-6, Extermophiles, 20, 167, 10.1007/s00792-016-0810-5
Zhong, 2005, Cloning of the Bacillus thuringiensis serovar sotto chitinase (Schi) gene and characterization of its protein, Genet. Mol. Biol., 28, 821, 10.1590/S1415-47572005000500026