Chitinolytic activity of phylogenetically diverse Bacillus cereus sensu lato from natural environments

Systematic and Applied Microbiology - Tập 43 - Trang 126075 - 2020
J.M. Drewnowska1, A. Fiodor1, J.E. Barboza-Corona2, I. Swiecicka1,3
1Department of Microbiology, Faculty of Biology, University of Bialystok, Bialystok, Poland
2Graduate Program in Biosciences, Food Department, Life Science Division, University of Guanajuato, Irapuato, Guanajuato, 36500, Mexico
3Laboratory of Applied Microbiology, Faculty of Biology, University of Bialystok, Bialystok, Poland

Tài liệu tham khảo

Barboza-Corona, 1999, Selection of chitinolytic strains of Bacillus thuringiensis, Biotechnol. Lett., 21, 1125, 10.1023/A:1005626208193 Barboza-Corona, 2003, Cloning, sequencing, and expression of the chitinase gene chiA74 from Bacillus thuringiensis, Appl. Environ. Microbiol., 69, 1023, 10.1128/AEM.69.2.1023-1029.2003 Barboza-Corona, 2008, Molecular and biochemical characterization of an endochitinase (ChiA-HD73) from Bacillus thuringiensis subsp. kurstaki HD-73, Mol. Biotechnol., 39, 29, 10.1007/s12033-007-9025-4 Casique-Arroyo, 2007, Development of a recombinant strain of Bacillus thuringiensis subsp. kurstaki HD-73 that produces the endochitinase ChiA74, Antonie Van Leeuwenhoek, 92, 1, 10.1007/s10482-006-9127-1 Castiaux, 2014, Diversity of pulsed-field gel electrophoresis patterns of cereulide-producing isolates of Bacillus cereus and Bacillus weihenstephanensis, FEMS Microbiol. Lett., 353, 124, 10.1111/1574-6968.12423 Ceuppens, 2013, Diversity of Bacillus cereus group strains in reflected in their broad range of pathogenicity and diverse ecological lifestyles, FEMS Microbiol. Ecol., 84, 433, 10.1111/1574-6941.12110 Cohan, 2017, Transmission in the origins of bacterial diversity from ecotypes to phyla, Microbiol. Spectr., 10.1128/microbiolspec.MTBP-0014-2016 Cohan, 2008, The origins of ecological diversity in prokaryotes, Curr. Biol., 18, 1024, 10.1016/j.cub.2008.09.014 Crooks, 2004, WebLogo: a sequence logo generator, Genome Res., 14, 1188, 10.1101/gr.849004 Drewnowska, 2013, Eco-genetic structure of Bacillus cereus sensu lato populations from different environments in Northeastern Poland, PLoS One, 8, e80175, 10.1371/journal.pone.0080175 Driss, 2005, Molecular characterization of novel chitinase from Bacillus thuringiensis subsp. kurstaki, J. Appl. Microbiol., 99, 945, 10.1111/j.1365-2672.2005.02639.x Feugeas, 2016, Links between transcription, environmental adaptation and gene variability in Eschericia coli: correlations between gene expression and gene variability reflect growth efficiencies, Mol. Biol. Evol., 33, 2515, 10.1093/molbev/msw105 Fiedoruk, 2017, Ribosomal background of the Bacillus cereus group thermotypes, Sci. Rep., 7, 46430, 10.1038/srep46430 Frederiksen, 2013, Bacterial chitinases and chitin-binding proteins as virulence factors, Microbiology, 159, 833, 10.1099/mic.0.051839-0 Fu, 2016, Purification and biochemical characterization of novel acidic chitinase from Paenibacillus barengoltzii, Int. J. Biol. Macromol., 91, 973, 10.1016/j.ijbiomac.2016.06.050 Fuente-Salcido, 2016, The endochitinase ChiA of Bacillus thuringiensis subsp. tenebrionis DSM-2803 and its potential use to control the phytopathogen Colletotichum gleosporioides, MicrobiologyOpen, 5, 819, 10.1002/mbo3.372 Gaber, 2016, Characterization of a chitinase from the cellulolytic ectinomycete Thermobifida fusca, Biochim. Biophys. Acta, 1864, 1253, 10.1016/j.bbapap.2016.04.010 Ghorbel-Bellaaj, 2012, Optimization of protease and chitinase production by Bacillus cereus SV1 on shrimp shell waste using statistical experimental design. Biochemical and molecular characterization of the chitinase, Ann. Microbiol., 62, 255, 10.1007/s13213-011-0371-x Guinebretière, 2013, Bacillus cytotoxicus sp. nov. is a novel termotolerant species of the Bacillus cereus group occasionally associated with food poisoning, Int. J. Syst. Evol. Microbiol., 63, 31, 10.1099/ijs.0.030627-0 Guinebretière, 2008, Ecological diversification in the Bacillus cereus group, Environ. Microbiol., 10, 851, 10.1111/j.1462-2920.2007.01495.x Hammami, 2013, Partial purification and characterization of chiIO8, a novel antifungal chitinase produced by Bacillus cereus IO8, J. Appl. Microbiol., 115, 358, 10.1111/jam.12242 Hsieh, 2010, Crystal structures of Bacillus cereus NCTU2 chitinase complexes with chitooligomers reveal novel substrate binding for catalysis. A chitinase without chitin binding and insertion domains, J. Biol. Chem., 285, 31603, 10.1074/jbc.M110.149310 Jang, 2004, Physiochemical characterization of α-chitin, β-chitin, and γ-chitin separated from natural resources, J. Polym. Sci. Pol. Chem., 42, 3423, 10.1002/pola.20176 Jiménez, 2013, Complete genome sequence of Bacillus toyonensis BCT-7112T, the active ingredient of the feed additive preparation Toyocerin, Genome Announc., 1, 10.1128/genomeA.01080-13 Juárez-Hernández, 2019, The crystal structure of the chitinase ChiA74 of Bacillus thuringiensis has a multidomain assembly, Sci. Rep., 9, 2591, 10.1038/s41598-019-39464-z Juárez-Hernández, 2015, Bacillus thuringiensis subsp. israelensis producing endochitinase ChiA74Δsp inclusions and its improved activity against Aedes aegypti, J. Appl. Microbiol., 119, 1692, 10.1111/jam.12962 Kaya, 2017, On chemistry of γ-chitin, Carbohydr. Polym., 176, 177, 10.1016/j.carbpol.2017.08.076 Kumar, 2016, MEGA7: Molecular Evolutionary Genetics Analysis version 7.0 for bigger datasets, Mol. Biol. Evol., 33, 1870, 10.1093/molbev/msw054 Larkin, 2007, Clustal W and Clstal X version 2.0, Bioinformatics, 23, 2947, 10.1093/bioinformatics/btm404 Letunic, 2018, 20 years of the SMART protein domain annotation resource, Nucleic Acids Res., 46, 493, 10.1093/nar/gkx922 Librado, 2009, DnaSP v5: a software for comprehensive analysis of DNA polymorphism data, Bioinformatics, 25, 1451, 10.1093/bioinformatics/btp187 Mander, 2016, Purification and characterization of chitinase showing antifungal and biodegradation properties obtained from Streptomyces anulatus SC242, Arch. Pharm. Res., 39, 878, 10.1007/s12272-016-0747-3 Manjeet, 2013, Bacterial chitin binding proteins show differential substrate binding and synergy with chitinases, Microbiol. Res., 168, 461, 10.1016/j.micres.2013.01.006 Martínez-Zavala, 2020, Chitinases of Bacillus thuringiensis: phylogeny, modular structure, and applied potentials, Front. Microbiol., 10, 3032, 10.3389/fmicb.2019.03032 Nei, 1986, Simple methods for estimating the numbers of synonymous and nonsynonymous nucleotide substitutions, Mol. Biol. Evol., 3, 418 Oyeleye, 2018, Chitinase: diversity, limitations, and trends in engineering for suitable applications, Biosci. Rep., 38, 10.1042/BSR20180323 Pfaffl, 2001, A new mathematical model for relative quantification in real-time RT-PCR, Nucleic Acids Res., 29, e45, 10.1093/nar/29.9.e45 R Development Core Team, 2008 Rebekić, 2015, Pearson’s or Spearman’s correlation coefficient—which one to use?, Poljoprivreda, 21, 47, 10.18047/poljo.21.2.8 Reiter, 2011, Reference genes for quantitative, reverse-transcription PCR in Bacillus cereus group strains throughout the bacterial life cycle, J. Microbiol. Methods, 86, 210, 10.1016/j.mimet.2011.05.006 Ruiz-Sanchez, 2005, Molecular cloning and purification of an endochitinase from Serratia marcescens (Nima), Mol. Biotechnol., 31, 103, 10.1385/MB:31:2:103 Smucker, 2010, Forms and functions of meso and micro-nichces of carbon within soil aggregates, J. Nematol., 42, 84 Vaikuntapu, 2016, A new chitinase-D from a plant growth promoting Serratia marcescens GPS5 for enzymatic conversion of chitin, Bioresour. Technol., 220, 200, 10.1016/j.biortech.2016.08.055 Waldeck, 2006, Isolation and molecular characterization of chitinase-deficient Bacillus licheniformis strains capable of deproteinization of shrimp shell waste to obtain highly viscous chitin, Appl. Environ. Microbiol., 72, 7879, 10.1128/AEM.00938-06 Wang, 2016, Characterization of a cold-adapted and salt-tolerant exo-chitinase (ChiC) from Pseudoalteromonas sp. DL-6, Extermophiles, 20, 167, 10.1007/s00792-016-0810-5 Zhong, 2005, Cloning of the Bacillus thuringiensis serovar sotto chitinase (Schi) gene and characterization of its protein, Genet. Mol. Biol., 28, 821, 10.1590/S1415-47572005000500026