Chiral thermodynamics in a magnetic field

Physics of Atomic Nuclei - Tập 64 - Trang 554-560 - 2001
N. O. Agasian1
1Institute of Theoretical and Experimental Physics, Moscow, Russia

Tóm tắt

The phase structure of the QCD vacuum in a magnetic field H is investigated at low temperatures T. The free energy of the hadronic phase in a constant homogeneous magnetic field is calculated in the one-loop approximation of chiral perturbation theory. The quark and the gluon condensate are found as functions of temperature and the field strength. It is shown that the order parameter $$\left\langle {\bar qq} \right\rangle $$ for the chiral phase transition remains constant when the temperature T and the magnetic field H change in such a way that H=const×T 2.

Tài liệu tham khảo

S. Weinberg, Physica A (Amsterdam) 96, 327 (1979).

J. Gasser and H. Leutwyler, Ann. Phys. (N.Y.) 158, 142 (1984).

J. Gasser and H. Leutwyler, Nucl. Phys. B 250, 465 (1985).

P. Binétrui and M. K. Gaillard, Phys. Rev. D 32, 931 (1985).

J. Gasser and H. Leutwyler, Phys. Lett. B 184, 83 (1987); 188, 477 (1987); H. Neuberger, Phys. Rev. Lett. 60, 889 (1988).

H. Leutwyler, Nucl. Phys. B (Proc. Suppl.) 4, 248 (1988); P. Gerber and H. Leutwyler, Nucl. Phys. B 321, 387 (1989).

N. O. Agasyan, Pis'ma Zh. Éksp. Teor. Fiz. 57, 200 (1993) [JETP Lett. 57, 208 (1993)].

H. Leutwyler, Lecture given at the Workshop on Effective Field Theories, Dobogoko, Hungary, 1991; Preprint No. BUTP-91-43 (Bern Univ., 1991).

N. O. Agasian, D. Ebert, and E. M. Ilgenfritz, Nucl. Phys. A 637, 135 (1998).

N. O. Agasian, D. Ebert, and E. M. Ilgenfritz, Talk given at 31st International Ahrenshoop Symposium on the Theory of Elementary Particles, Buckow, Germany, 1997, p. 195.

S. P. Klevansky and R. H. Lemmer, Phys. Rev. D 39, 3478 (1989).

I. A. Shuspanov and A. V. Smilga, Phys. Lett. B 402, 351 (1996).

N. O. Agasyan and I. A. Shushpanov, Pis'ma Zh. Éksp. Teor. Fiz. 70, 711 (1999) [JETP Lett. 70, 717 (1999)].

N. O. Agasian and I. A. Shuspanov, Phys. Lett. B 472, 143 (2000).

N. O. Agasian, Phys. Lett. B 488, 39 (2000).

E. L. Gubankova and Yu. A. Simonov, Phys. Lett. B 360, 93 (1995).

H. G. Dosch, H. J. Pirner, and Yu. A. Simonov, Phys. Lett. B 349, 335 (1995).

Yu. A. Simonov, in Proceedings of the Enrico Fermi International School in Physics, Varenna, 1995, pp. 319–337.

N. O. Agasyan, Pis'ma Zh. Éksp. Teor. Fiz. 71, 65 (2000) [JETP Lett. 71, 43 (2000)].

N. O. Agasian, B. O. Kerbikov, and V. I. Shevchenko, Phys. Rep. 320, 131 (1999).

F. E. Low, Phys. Rev. 110, 974 (1958).

V. A. Novikov, M. A. Shifman, A. I. Vainshtein, and V. I. Zakharov, Nucl. Phys. B 191, 301 (1981); Fiz. Élem. Chastits At. Yadra 13, 542 (1982) [Sov. J. Part. Nucl. 13, 224 (1982)]; A. B. Migdal and M. A. Shifman, Phys. Lett. B 114B, 445 (1982).

P. J. Ellis, J. I. Kapusta, and H.-B. Tang, Phys. Lett. B 443, 63 (1998).

J. Daicic, N. E. Frankel, and V. Kowalenko, Phys. Rev. Lett. 71, 1779 (1993).

D. J. Toms, Phys. Lett. B 343, 259 (1995); Phys. Rev. D 55, 7797 (1997); cond-mat/9612003.

P. Elmfors, P. Liljenberg, D. Persson, and Bo-S. Skagerstam, Phys. Lett. B 348, 462 (1995).

H. P. Rojas, Phys. Lett. B 379, 148 (1996).

J. I. Kapusta, Finite Temperature Field Theory (Cambridge Univ. Press, Cambridge, 1989).

L. D. Landau and E. M. Lifshitz, Statistical Physics (Nauka, Moscow, 1976; Pergamon, Oxford, 1980).