Chiral de Rham Complex on Riemannian Manifolds and Special Holonomy
Tóm tắt
Từ khóa
Tài liệu tham khảo
Malikov F., Schechtman V., Vaintrob A.: Chiral de Rham complex. Commun. Math. Phys. 204, 439–473 (1999)
Gorbounov V., Malikov F., Schechtman V.: Gerbes of chiral differential operators. II. Vertex algebroids. Invent. Math. 155(3), 605–680 (2004)
Ben-Zvi D., Heluani R., Szczesny M.: Supersymmetry of the chiral de Rham complex. Comp. Math. 144, 503–521 (2008)
Malikov F.: Lagrangian approach to sheaves of vertex algebras. Commun. Math. Phys. 278, 487–548 (2008)
Kapustin, A.: Chiral de Rham complex and the half-twisted sigma-model. http://arxiv.org/abs/hep-th/0504074v1 , 2005
Witten, E.: Two-dimensional models with (0,2) supersymmetry: Perturbative aspects. http://arxiv.org/abs/hep-th/0504078v3 , 2006
Frenkel, E., Losev, A., Nekrasov, N.: Instantons beyond topological theory. I. http://arxiv.org/abs/hep-th/0610149v1 , 2006
Frenkel, E., Losev, A., Nekrasov, N.: Instantons beyond topological theory. II. http://arxiv.org/abs/0803.3302v1 [hep-th], 2008
Ekstrand J., Heluani R., Källén J., Zabzine M.: Non-linear sigma models via the chiral de Rham complex. Adv. Theor. Math. Phys. 13, 1221–1254 (2009)
Heluani R.: Supersymmetry of the Chiral de Rham Complex 2: Commuting Sectors. Int. Math. Res. Notices 2009(6), 953–987 (2009)
Howe P.S., Papadopoulos G.: A Note on holonomy groups and sigma models. Phys. Lett. B263, 230–232 (1991)
Howe P.S., Papadopoulos G.: Holonomy groups and W symmetries. Commun. Math. Phys. 151, 467–480 (1993)
Odake S.: Extension of N = 2 superconformal algebra and Calabi-Yau compactification. Mod. Phys. Lett. A4, 557 (1989)
Shatashvili S.L., Vafa C.: Superstrings and manifold of exceptional holonomy. Selecta Math. 1, 347 (1995)
De Sole A., Kac V.G.: Freely generated vertex algebras and non-linear Lie conformal algebras. Commun. Math. Phys. 254(3), 659–694 (2005)
Zabzine M.: Hamiltonian perspective on generalized complex structure. Commun. Math. Phys. 263, 711–722 (2006)
Bredthauer A., Lindström U., Persson J., Zabzine M.: Generalized Kaehler geometry from supersymmetric sigma models. Lett. Math. Phys. 77, 291–308 (2006)
Zabzine M.: Lectures on generalized complex geometry and supersymmetry. Arch. Math. (Brno) 42(suppl), 119–146 (2006)
Barakat A., De Sole A., Kac V.G.: Poisson vertex algebras in the theory of Hamiltonian equations. Jpn. J. Math. 4(2), 141–252 (2009)
Joyce, D.D.: Compact manifolds with special holonomy. Oxford Mathematical Monographs. Oxford: Oxford University Press, 2000
Karigiannis, S.: Flows of Spin(7)-structures. In: Differential geometry and its applications. River Edge, NJ: World Scientific Publishing, 2008, pp. 263–277
Lian B.H., Linshaw A.R., Song B.: Chiral equivariant cohomology. II. Trans. Amer. Math. Soc. 360(9), 4739–4776 (2008)
Figueroa-O’Farrill J.M.: A note on the extended superconformal algebras associated with manifolds of exceptional holonomy. Phys. Lett. B392, 77–84 (1997)