Chiral Amine Synthesis – Recent Developments and Trends for Enamide Reduction, Reductive Amination, and Imine Reduction

Advanced Synthesis and Catalysis - Tập 352 Số 5 - Trang 753-819 - 2010
Thomas C. Nugent1, Mohamed El‐Shazly1
1Department of Chemistry, School of Engineering and Science, Jacobs University Bremen, Campus Ring 1, 28759 Bremen, Germany,

Tóm tắt

AbstractThe review examines the chiral amine literature from 2000–2009 (May) concerning enantioselective and diastereoselective methods for N‐acylenamide and enamine reduction, reductive amination, and imine reduction. The reaction steps for each strategy, from ketone to primary chiral amine, are clearly defined, with best methods and yields for starting material preparation and final deprotection noted. Categories of chiral amines have been defined in Section 1 to allow the reader to quickly understand whether their specific target amine falls within a difficult to synthesize, or not, structural class. Amino acids are not considered in this work.

Từ khóa


Tài liệu tham khảo

For journal reviews see:

10.1021/cr980414z

10.1021/ar020066u

10.1351/pac200375010039

10.1023/B:TOCA.0000003096.11191.25

10.1023/B:TOCA.0000003097.41136.26

10.1002/adsc.200390000

10.1002/ange.200300599

10.1002/anie.200300599

10.1055/s-2004-837225

10.2174/1385272054880214

10.1002/ejoc.200500232

10.1351/pac200678071397

10.1016/j.tet.2006.06.107

10.1055/s-2006-958957

10.2174/157019307781369959

10.1002/asia.200700081

10.1021/ar7001107

10.1021/ar7001123

10.1016/j.tet.2006.11.076

10.1021/cr040107v

10.1021/cr0306788

For book chapter reviews see:

Spindler F., 2004, Enantioselective reduction of CN bonds and enamines with hydrogen, in: Transition Metals for Organic Synthesis, 113

Blacker J., 2004, Scaleup Studies in Asymmetric Transfer Hydrogenation, in: Asymmetric Catalysis on Industrial Scale: Challenges, Approaches, and Solutions, 201

2007, The Handbook of Homogeneous Hydrogenation, 1

Nugent T. C., 2008, Chiral Amine Synthesis‐Strategies, Examples, and Limitations, in: Process Chemistry in the Pharmaceutical Industry, Vol 2, Challenges in an Ever‐Changing Climate, 137

Rueping M., 2008, New Developments in Enantioselective Brønsted Acid Catalysis: Chiral Ion Pair Catalysis and Beyond, in: Organocatalysis, 207

Claver C., 2008, Imine Hydrogenation, in: Modern Reduction Methods, 237

Wills M., 2008, Imino Reductions by Transfer Hydrogenation, in: Modern Reduction Methods, 271

10.1002/9783527622115.ch13

 

10.1021/ja0650450

10.1002/ange.200700760

10.1002/anie.200700760

10.1021/ja076519d

10.1002/chem.200702027

10.1002/ange.200801445

10.1002/anie.200801445

 

10.1002/ange.200600331

10.1002/anie.200600331

10.1021/ja058287t

10.1002/ange.200603017

10.1002/anie.200603017

10.1021/ja068819l

10.1021/ja0760731

For recent reviews and manuscripts on the subject of carbanion addition to imine derivatives see: refs.[1k l r]and

10.1021/ja044003d

10.1002/ejoc.200600781

10.1021/jo7018703

Patman R. L., 2008, Aldrichimica Acta, 41, 95

 

10.1021/ja054331t

10.1021/ol701562p

10.1002/ange.200701899

10.1002/anie.200701899

10.1002/ange.200352578

10.1002/anie.200352578

 

10.1021/ja071739c

10.1021/ja710521m

10.1002/ange.200800103

10.1002/anie.200800103

 

10.1021/ja806367e

10.1021/ja0718366

 

10.1021/ja058536d

10.1039/b617537f

10.1002/chem.200600899

10.1002/ejoc.200700568

10.1002/adsc.200700336

10.1002/adsc.200800091

10.1021/jo800270n

 

10.1002/cbic.200700601

10.1002/ange.200803763

10.1002/anie.200803763

10.1021/ja00895a049

For examples of chiral nitrogen atoms see:

10.1351/pac199668030531

10.1021/jo010032k

10.1021/om0498495

10.1016/j.tetlet.2006.06.080

Amino acid synthesis is a specialized field unto itself is well developed has been extensively reviewed and is therefore not discussed here for examples of reviews and some recent manuscripts see: ref.[1p]and

10.1002/3527604693.ch1

10.1021/jo048374o

10.1002/ejoc.200700345

Blacker J., 2007, Spec. Chem. Mag., 24

For some recent reviews discussing amino acid synthesisviaenamides see: refs.[1p 2c 15a]and

10.1021/ar030156e

10.1016/j.tetasy.2004.04.037

10.1021/cr020049i

Knowles W. S., 1968, J. Chem. Soc. Chem. Commun., 1445

 

10.1039/c29710000481

10.1021/ja00773a028

The ligands used for examiningN‐acetylenamides are also useful in general for dehydroamino acid and ester and itaconic acid reductions.

 

10.1021/ja005554g

10.1021/ja010161i

10.1002/adsc.200390026

10.1021/jo049655z

10.1002/asia.200600014

10.1039/b607479k

10.1021/jo0619276

10.1002/asia.200800146

10.1021/ja076542z

 

10.1021/ol061318k

10.1016/j.tetlet.2006.06.135

10.1002/ejoc.200600024

10.1021/ja953872n

10.1021/jo00153a015

Savarin C., 2008, An Efficient and Scalable Process for the Preparation of a Potent MC4 Receptor Agonist, in: Process Chemistry in the Pharmaceutical Industry, Challenges in an Ever‐Changing Climate

For representative examples see:

10.1021/ol7028788

transfer hydrogenation process:J.Martin L. A.Campbell (Avecia Limited Great Britain) U.S. Patent 6 696 608 2004.

 

10.1021/jo9824605

10.1021/jo9809332

10.1021/ol802665v

An exception has just been published by Zhang where R1=Me R2=H and R3=aryl this research is discussed in Section 2.12 and a generic substrate example can be found in Figure 21.

For example see:

10.1021/ja0433020

10.1021/ja0450861

10.1021/ol050117y

10.1016/j.tetlet.2004.10.063

10.1016/j.tet.2004.03.004

10.3987/COM-04-10232

10.1021/ol0494360

10.1021/ol049464i

This may be changing even as this text is being written for example the very recent and elegant industrial example of a Pd‐mediated coupling of an enol tosylate with a primary amide to form an enamide drug precursor see ref.[30]

10.1021/op800270e

 

10.1016/j.bmcl.2007.10.024

10.1021/jm051121i

10.1016/S0040-4039(99)00807-2

10.1002/(SICI)1521-3765(19990301)5:3<1095::AID-CHEM1095>3.0.CO;2-C

10.1016/S0957-4166(97)00330-3

10.1021/jo00413a016

For example see:

10.1016/S0040-4039(02)01142-5

10.1016/j.tetasy.2003.07.005

For example see page 1268 of ref.[1p]

10.1002/1521-3757(20020703)114:13<2454::AID-ANGE2454>3.0.CO;2-3

10.1002/1521-3773(20020703)41:13<2348::AID-ANIE2348>3.0.CO;2-K

Examples of trisubstituted α‐aryl‐β‐aryl‐N‐acetylenamides or tetrasubstituted α‐aryl‐β‐aryl‐β′‐arylenamides were absent from the reviewed manuscripts. For similar substrates see Q.‐L. Zhou’s recent successes with trisubstituted α‐aryl‐β‐aryl‐N‐pyrrolidinylenamines in Section 2.13 and Figure 22.

10.1016/j.tetlet.2005.11.064

For some examples see:

10.1021/ol035551j

10.1021/jo026869c

10.1021/jo035627p

10.1016/j.tetasy.2004.11.087

10.1002/adsc.200800152

10.1002/ange.200601501

10.1002/anie.200601501

For example see:

10.1021/ja052749l

10.1021/jo051912s

For ameta‐CO2Me example see ref.[28d]

For an excellent discussion of the problematic nature of a nitrile substituent see ref.[30]

10.1021/ja974045k

10.1016/S0040-4039(02)01838-5

For example see page 943 of ref.[15b]or page 309 of ref.[21c]

The dates of submission are separated by 3 months see:

Claver C., 2000, Chem. Commun., 961

10.1002/1521-3757(20001103)112:21<4047::AID-ANGE4047>3.0.CO;2-Z

10.1002/1521-3773(20001103)39:21<3889::AID-ANIE3889>3.0.CO;2-T

10.1021/ja002507f

10.1016/S0040-4039(99)00329-9

10.1002/1521-3757(20010401)113:7<1237::AID-ANGE1237>3.0.CO;2-Z

10.1002/1521-3773(20010401)40:7<1197::AID-ANIE1197>3.0.CO;2-G

10.1016/j.tetasy.2003.08.017

10.1021/ol049726g

Submitted April 11 2002 see ref.[34a]

Berg M. van den, Adv. Synth. Catal. 2002, 344, 1003

Submitted August 12 2002 see ref.[21c]

Submitted August 20 2002 see: ref.[45]

10.1002/ange.200390178

10.1002/anie.200390209

No simple name acronym or shorthand was explicitly stated by the publishing author who used or synthesized the indicated ligand. The name or acronym indicated here was assigned in an effort to ease reader recognition without always looking back at the Figures while simultaneously providing structural information and was always done in a way to try and preserve the authors comments when and where possible.

10.1021/ol006591f

10.1021/jo0004613

10.1002/1521-3757(20020301)114:5<875::AID-ANGE875>3.0.CO;2-S

10.1002/1521-3773(20020301)41:5<847::AID-ANIE847>3.0.CO;2-F

10.1002/1521-3757(20020503)114:9<1682::AID-ANGE1682>3.0.CO;2-O

10.1002/1521-3773(20020503)41:9<1612::AID-ANIE1612>3.0.CO;2-H

10.1021/ol048519d

10.1016/j.tetasy.2005.02.003

10.1021/ol0617749

10.1016/j.tetasy.2008.07.022

10.1002/adsc.200800653

10.1021/ol8018677

10.1002/asia.200800111

Borghese A., 2008, Process Research and Development of LY414197, a 5HT2B Antagonist, in: Process Chemistry in the Pharmaceutical Industry, Challenges in an Ever‐Changing Climate

Allwein and McWilliams reported on oneorthocontaining fluoro substrate:p‐Br‐o‐F‐phenylenamide 98%ee 89% isolated yield. They employed anN‐trifluoroacetylenamide (see Section 2.10).[22b]Theeefor this substrate is not suprising based on Burk’s very similar result for thep‐F‐o‐F‐phenylenamide (98%ee) using essentially identical reaction conditions and the same catalyst.[22d]Several Josiphos ligands (Figure 20) were also examined but provided significantly lowerees.

10.1021/ja048496y

10.1055/s-2004-822396

10.1021/ol991074m

10.1021/jo981612t

10.1016/j.tet.2005.10.047

10.1021/jo020250t

For Zheng’s successes with trisubstituted enamides using polymer bound ligands see Section 2.14 Immobilized Catalysts forN‐Acetylenamide Reduction.

10.1016/S0040-4020(02)00554-9

10.1021/jo048212s

10.1021/ol0258435

Some researchers refer to phosphepines as phosphanes.

 

10.1021/jo00119a008

10.1002/adsc.200390017

10.1002/ange.200503663

10.1002/anie.200503663

10.1016/j.catcom.2007.05.030

10.1039/b306793a

10.1002/1615-4169(20010430)343:4<331::AID-ADSC331>3.0.CO;2-A

The final step of the enamide strategy is an amide hydrolysis or hydrazinolysis see Section 2.1.

See Table 2 entries 11 and 12 of ref.[80]

Zhang showed progress with anN‐carbamoyl‐protected enamide for the synthesis of Zoloft see Table 2 entry 5 of ref.[81]Zoloft (Figure 1 of this manuscript) and a racemic precursor (Figure 16 of this manuscript) of Zhang’s were highlighted earlier in this review. He also examined anN‐tosylenamide.

The conversion and isolated yields are included here because researchers in the enamide reduction field do not provide isolated yield data but instead percent conversion data. The reactions are stated as quantitative but as these industrial chemists demonstrate this is not always the case.

10.1021/ja039153n

The use of pinacolone (tert‐butyl methyl ketone) and 1‐adamantyl methyl ketone is acceptable because they contain an α‐quaternary carbon ketones lacking a quaternary carbon bound to the carbonyl carbon had not been previously demonstrated.

10.1002/ange.200805058

10.1002/anie.200805058

See ref.[30]and citations given therein.

10.1021/ja00092a066

10.1016/S0040-4039(00)00197-0

10.1021/ja0644778

10.1021/ja808358r

10.1021/cr010341a

For an industrial example indicating the need to control residual rhodiumviatreatment with carbon see page 87 of ref.[30]

10.1021/ja047372i

10.1039/B511323G

10.1002/ange.200600432

10.1002/anie.200600432

10.1039/b309304b

10.1039/b815380a

10.1039/b823047a

 

10.1002/adsc.200303208

10.1055/s-2004-837225

10.1055/s-1999-3106

For literature pertaining to the origins and definition of reductive amination see:

Emerson W. S, 1948, Org. React., 4, 174

Moore M. L., 1949, Org. React., 5, 301

2001, March’s Advanced Organic Chemistry, 1187

Similarly direct asymmetric reductive amination is discouraged and should be replaced by the shorter and more accurate phrase asymmetric reductive amination or enantioselective reductive amination.

 

10.1016/S0022-328X(00)88210-8

10.2533/chimia.1999.275

10.1021/ja0644778

10.1021/ol701562p

 

10.1021/jo0203701

10.1021/jo020690k

See for example:

10.1002/ange.200803763

10.1002/anie.200803763

10.1002/cbic.200700601

10.1002/1615-4169(200201)344:1<17::AID-ADSC17>3.0.CO;2-8

10.1021/jo026856z

The reader is referred to the following citations to better appreciate the role of iodine:

10.1002/ange.19961081307

10.1002/anie.199614751

Spindler F., 1999, Enantiomer, 4, 557

10.1002/1521-3757(20010917)113:18<3533::AID-ANGE3533>3.0.CO;2-O

10.1002/1521-3773(20010917)40:18<3425::AID-ANIE3425>3.0.CO;2-O

 

10.1002/ange.200352503

10.1002/anie.200352503

method for the production of amines by reductive amination of carbonyl compounds under transfer hydrogenation conditions see:A.Börner U.Dingerdissen R.Kadyrov T. H.Riermeier V.Tararov (Degussa AG Germany) U.S. Patent 2004267051 2004.

Method for producing amines by homogeneously catalyzed reductive amination of carbonyl compounds see:T.Riermeier K.‐J.Haack U.Dingerdissen A.Boerner V.Tararov R.Kadyrov (Degussa AG Germany) U.S. Patent 6 884 887 2005.

10.1021/ol802336m

10.1021/ja807188s

10.1021/ja9021683

Note: the aryl alkyl ketones required the addition of 5 mol% TRIP in addition to the noted catalysts.

10.1002/ange.200503062

10.1002/anie.200503062

We were unable to locate the number of equivalents used in the text of the manuscript or its supporting information.

We were unable to locate the wt% of 4 Å molecular sieves used in the text of the manuscript or its supporting information.

10.1021/ja072134j

10.1021/ja065404r

10.1002/adsc.200800613

10.1021/ja057222n

10.1002/ange.200700165

10.1002/anie.200700165

 

10.1021/op050213e

process for the preparation of (S S)‐cis‐2‐benzhydryl‐3‐benzylaminoquinuclidine:T. C.Nugent R.Seemayer (Pfizer Products Inc. and DSM Pharmaceuticals Inc.) Patent Appl. WO2004035575 2004.

The method was used as a trade secret within Catalytica/Pfizer since 1998 see citation 19 in ref.[132a]

10.1021/jo00295a060

For recent publications by Bhattacharyya see:

Kumpaty H. J., 2005, Synthesis, 2205

10.1016/j.tet.2003.12.024

10.1039/a803703e

10.1021/ol062715y

7‐alpha‐Aminosteroid derivatives or pharmaceutically acceptable salts thereof preparation method thereof and composition for anticancer or antibiotics containing the same as an active ingredient see:H. S.Kim N. J.Cho S. N.Khan (South Korea) Patent Appl. WO 038965 A1 2008.

10.1016/j.tet.2007.10.032

For an example of another chiral ketone reductively aminated with Ti(O‐i‐Pr)4or Al(O‐i‐Pr)3with hydride reagents see:A process which is useful for converting the carbonyl function in position 4′’ of the cladinose unit of an aza‐macrolide into an amine derivative:J.Dhainaut P.Leon F.Lhermitte G.Oddon (Merial France) U.S. Patent 6 562 953 2003.

10.1016/j.tetlet.2003.12.037

No reaction times were reported.

10.1021/ol051909v

10.1002/adsc.200606073

10.1021/jo7021235

The outlined reductive amination protocols with (R)‐ or (S)‐PEA and prochiral alkyl alkyl′ and aryl alkyl ketones (acyclic or cyclic) allow higher yields and shorter reaction times than the previously practiced two‐step strategyviaisolated (R)‐ or (S)‐phenylethyl ketimines for example compare with:

10.1055/s-1995-4901

10.1016/S0957-4166(00)00209-3

10.1021/op060223v

To enable racemic primary amine formation (not shown) the ketone (structure shown in Scheme 14) was reductively aminated with NH4OAc/NaBH3CN over 15 h at 60 °C providing the racemic amine in 52% yield.

10.1016/S0040-4039(99)01351-9

10.1021/jo0616512

10.1002/ange.200604246

10.1002/anie.200604246

Spindler F., 2007, Enantioselective Hydrogenation of CN Functions and Enamines, in: The Handbook of Homogeneous Hydrogenation, 1193

10.1021/ar9502341

 

10.1002/9783527622115

Blaser H.‐U., 2004, The Chiral Switch of Metolachlor: The Development of a large‐Scale Enantioselective Catalytic Process, in: Asymmetric Catalysis on Industrial Scale, Challenges, Approaches and Solutions, 55

 

10.1021/ja00099a012

10.1021/ja00105a011

 

10.1021/ja960808c

10.1021/jo980808q

10.1021/ol005583w

10.1021/jo991328h

See ref.[151]specifically page 1211.

 

10.1002/ange.19901020517

10.1002/anie.199005581

10.1023/A:1013832630565

10.1021/ar7001057

Reetz M. T., 2008, Ernst Schering Foundation Symposium Proceedings 2007–2, Organocatalysis

10.1002/1615-4169(20010129)343:1<68::AID-ADSC68>3.0.CO;2-G

 

10.1055/s-1982-29774

10.1055/s-1994-22964

 

10.1021/ja034980

10.1016/j.tetasy.2008.09.011

10.1039/b714161k

10.1002/adsc.200606149

10.1021/jo070700n

10.1021/ol060110w

10.1021/ja050831a

Aldrich pricing 2009 5 gram costs 180 Euro July2009.

 

10.1055/s-2005-865315

10.1021/jo0516483

10.1002/chem.200304794

 

10.1021/ol035102j

10.1002/adsc.200404081

10.1002/adsc.200606128

The modified NaBH4was prepared under the inert conditions of 0 °C with fine grain NaBH4(0.75 mmol) in CH3Cl (5 mL) EtOH (0.75 mmol) tetrahydrofurfuryl alcohol (10.3 mmol) after 3 h of stirring.

10.1002/ange.200353294

10.1002/anie.200353294

 

Wang Y.‐Q., 2006, Synlett, 8, 1189

10.1021/jo0700878

10.1039/b711666g

Aniline its substituted derivatives andN‐alkylated forms are well known to be genotoxic see:

Braish T. F., 2008, Emerging Trends in Process Chemistry, in: Process Chemistry in the Pharmaceutical Industry, Challenges in an Ever‐Changing Climate, 13

Federsel H.‐J., 2008, To Overcome the Hurdles: Coping with the Synthesis of Robalzotan, a Complex Chroman Antidepressant, in: Process Chemistry in the Pharmaceutical Industry, Challenges in an Ever‐Changing Climate, 111

 

10.1021/ol060112g

10.1021/ol060984i

10.1021/ol071168t

10.1021/jo982342h

10.1016/j.tetasy.2007.11.039

10.1002/chem.19970030609

10.1039/B816051A

 

Sugiura M., 2003, Synlett, 11, 1749

10.1002/ange.200603496

10.1002/anie.200603496

10.1002/ange.200601540

10.1002/anie.200601540

10.1016/j.tetlet.2006.09.044

10.1021/jo051867o

 

10.1002/1521-3765(20000602)6:11<2032::AID-CHEM2032>3.0.CO;2-B

10.1021/ja0684803

10.1002/chem.200601893

 

10.1002/adsc.200606178

10.1021/ja8062315

10.1021/ja984309i

10.1021/ja046129g

10.1002/adsc.200390005

10.1002/ejoc.200500523

Cozzi P. G., 2003, Synlett, 6

10.1002/adsc.200390011

10.1002/chem.200400441

10.1016/j.tetasy.2004.05.015

10.1021/ol048399

10.1002/chem.200500942

10.1002/asia.200800182

10.1002/ange.200502482

10.1002/anie.200502482

10.1016/j.tetlet.2005.01.144

10.1021/om050885t

10.1021/ol060546b

10.1002/adsc.200505276

10.1021/ja063444p

10.1016/S0040-4039(01)00219-2

10.1016/j.tetlet.2006.03.122

10.1021/ol049213

10.1016/j.tet.2005.08.117

10.1021/jo062215i

10.1021/jo800094q

10.1002/ange.200503941

10.1002/anie.200503941

10.1039/b703307a

10.1016/j.tetasy.2007.03.008

 

10.1021/ol062633

10.1002/adsc.200700504

10.1016/j.tetlet.2007.09.064

10.1002/chir.20615

10.1021/ol0515964

10.1016/j.tetlet.2003.11.021

 

10.1021/ol034282u

10.1002/chem.200801479

10.1021/om800926p

 

10.1002/1521-3765(20020703)8:13<2955::AID-CHEM2955>3.0.CO;2-Q

10.1016/j.tet.2003.06.004

10.1021/ol0160957

10.1055/s-1985-31308

10.1016/j.tet.2004.05.003

 

10.1016/j.tetasy.2007.06.008

10.1021/jo048389m

10.1080/00397910701490147

10.1039/b108573p

 

10.1039/c39880001466

10.1039/C39910001684

10.1016/S0957-4166(00)80199-8

10.1021/om960082t

10.1002/ange.200700533

10.1002/anie.200700533

10.1039/B605838H

10.1039/B815407B

10.1039/b505271h

10.1021/ja983524w

10.1021/om001054k

10.1016/S0957-4166(00)00105-1

10.1002/adsc.200505291

 

10.1039/c39860000265

10.1021/ja00191a038

10.1016/S0223-5234(97)89090-3

10.1002/hlca.200390022

10.1016/S0957-4166(01)00358-5

 

10.1021/ol0704791

10.1021/jo801181d

 

10.1021/jo0255431

10.1021/jo049941a

10.1021/jo049471k

10.1039/B316518C

10.1016/j.jfluchem.2006.09.013

10.1070/RC2004v073n06ABEH000778

10.1039/b106435p

 

10.1016/S0040-4039(00)80059-3

10.1039/P19900001859

10.1016/S0040-4039(99)01031-X

 

10.1021/jo0007837

We were unable to locate (in the manuscript or its supporting information) information regarding catalyst loading reaction time and yield for the reuse of the polymeric catalyst.

10.1016/S0957-4166(03)00314-8

10.1016/j.tetasy.2008.03.008

10.1021/jo060123n

10.1021/jo800204n

10.1021/ja903319r

 

10.1021/jo00339a035

10.1055/s-1991-26511

10.1021/ja00041a067

10.1016/S0040-4020(01)89375-3

‐Lin‐Wu P., 1995, Synthesis, 435

10.1002/ange.200500691

10.1002/anie.200500691

10.1016/j.tetasy.2003.11.004

 

10.1002/ange.200600263

10.1002/anie.200600263

10.1021/ol048005e

10.1016/S0040-4039(96)01471-2

 

Nishikori H., 2003, Synlett, 561

they also examined phenyl methyl N‐Ns‐imines (Ns=p‐nitrobenzenesulfonyl) but the reaction provided low yield (35%) with mediocreee(72%).

10.1016/j.tetlet.2005.06.019

10.1016/j.tetasy.2006.11.026

10.1021/jo0609834

10.1021/ol052628q

10.1002/(SICI)1099-0690(199904)1999:4<805::AID-EJOC805>3.0.CO;2-R

10.1002/adsc.200390004

10.1016/S0960-894X(03)00240-3

No catalyst loading was provided.

10.1021/ol034014w

10.1246/cl.2004.1424

10.1016/S0957-4166(00)00044-6

10.1016/S0040-4020(03)01091-3

 

10.1016/S0957-4166(98)00368-1

10.1021/cr030692k

10.1016/j.tet.2003.11.043

10.1039/b512139f

10.1002/ange.200602482

10.1002/anie.200602482

10.1021/ar700094b

10.1016/j.ccr.2007.09.015

10.1039/b203932j

10.1021/ol035746r

10.1021/ol802801p

10.1002/adsc.200404050

10.1016/j.tetasy.2004.05.042

10.1016/j.molcata.2005.01.044

10.1016/j.tetasy.2006.04.023

10.1039/b600496b

10.1002/ange.200601832

10.1002/anie.200601832

10.1002/ange.200600191

10.1002/anie.200600191

10.1002/ange.200701158

10.1002/anie.200701158

10.1016/j.tetlet.2007.01.018

10.1021/ol800591u

10.1021/ja903547q

Personal communication from Dr. Tamim Braish Senior Director Chemical R&D Pfizer Groton Connecticut USA.