Chimeric antigen receptor-modified T cells derived from defined CD8+ and CD4+ subsets confer superior antitumor reactivity in vivo

Leukemia - Tập 30 Số 2 - Trang 492-500 - 2016
Daniel Sommermeyer1, Michael Hudecek1, Paula L. Kosasih1, Tea Gogishvili2, David G. Maloney1, Cameron J. Turtle1, Stanley R. Riddell3
1Clinical Research Division, Program in Immunology, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
2Department of Medicine II – Hematology and Medical Oncology, University of Würzburg, Würzburg, Germany
3Department of Medicine, University of Washington, Seattle, WA, USA.

Tóm tắt

Từ khóa


Tài liệu tham khảo

Jensen MC, Riddell SR . Design and implementation of adoptive therapy with chimeric antigen receptor-modified T cells. Immunol Rev 2014; 257: 127–144.

Kochenderfer JN, Rosenberg SA . Treating B-cell cancer with T cells expressing anti-CD19 chimeric antigen receptors. Nat Rev Clin Oncol 2013; 10: 267–276.

Davila ML, Riviere I, Wang X, Bartido S, Park J, Curran K et al. Efficacy and toxicity management of 19-28z CAR T Cell therapy in B cell acute lymphoblastic leukemia. Sci Transl Med 2014; 6: 224ra225.

Grupp SA, Kalos M, Barrett D, Aplenc R, Porter DL, Rheingold SR et al. Chimeric antigen receptor-modified T cells for acute lymphoid leukemia. N Engl J Med 2013; 368: 1509–1518.

Kalos M, Levine BL, Porter DL, Katz S, Grupp SA, Bagg A et al. T cells with chimeric antigen receptors have potent antitumor effects and can establish memory in patients with advanced leukemia. Sci Transl Med 2011; 3: 95ra73.

Kochenderfer JN, Dudley ME, Feldman SA, Wilson WH, Spaner DE, Maric I et al. B-cell depletion and remissions of malignancy along with cytokine-associated toxicity in a clinical trial of anti-CD19 chimeric-antigen-receptor-transduced T cells. Blood 2012; 119: 2709–2720.

Porter DL, Levine BL, Kalos M, Bagg A, June CH . Chimeric antigen receptor-modified T cells in chronic lymphoid leukemia. N Engl J Med 2011; 365: 725–733.

Maude SL, Frey N, Shaw PA, Aplenc R, Barrett DM, Bunin NJ et al. Chimeric antigen receptor T cells for sustained remissions in leukemia. N Engl J Med 2014; 371: 1507–1517.

Savoldo B, Ramos CA, Liu E, Mims MP, Keating MJ, Carrum G et al. CD28 costimulation improves expansion and persistence of chimeric antigen receptor-modified T cells in lymphoma patients. J Clin Invest 2011; 121: 1822–1826.

Brentjens RJ, Riviere I, Park JH, Davila ML, Wang X, Stefanski J et al. Safety and persistence of adoptively transferred autologous CD19-targeted T cells in patients with relapsed or chemotherapy refractory B-cell leukemias. Blood 2011; 118: 4817–4828.

Brentjens RJ, Santos E, Nikhamin Y, Yeh R, Matsushita M, La Perle K et al. Genetically targeted T cells eradicate systemic acute lymphoblastic leukemia xenografts. Clin Cancer Res 2007; 13 (18 Pt 1): 5426–5435.

Carpenito C, Milone MC, Hassan R, Simonet JC, Lakhal M, Suhoski MM et al. Control of large, established tumor xenografts with genetically retargeted human T cells containing CD28 and CD137 domains. Proc Natl Acad Sci USA 2009; 106: 3360–3365.

Hudecek M, Lupo-Stanghellini MT, Kosasih PL, Sommermeyer D, Jensen MC, Rader C et al. Receptor affinity and extracellular domain modifications affect tumor recognition by ROR1-specific chimeric antigen receptor T cells. Clin Cancer Res 2013; 19: 3153–3164.

James SE, Greenberg PD, Jensen MC, Lin Y, Wang J, Till BG et al. Antigen sensitivity of CD22-specific chimeric TCR is modulated by target epitope distance from the cell membrane. J Immunol 2008; 180: 7028–7038.

Kowolik CM, Topp MS, Gonzalez S, Pfeiffer T, Olivares S, Gonzalez N et al. CD28 costimulation provided through a CD19-specific chimeric antigen receptor enhances in vivo persistence and antitumor efficacy of adoptively transferred T cells. Cancer Res 2006; 66: 10995–11004.

Milone MC, Fish JD, Carpenito C, Carroll RG, Binder GK, Teachey D et al. Chimeric receptors containing CD137 signal transduction domains mediate enhanced survival of T cells and increased antileukemic efficacy in vivo. Mol Ther 2009; 17: 1453–1464.

Kaech SM, Hemby S, Kersh E, Ahmed R . Molecular and functional profiling of memory CD8 T cell differentiation. Cell 2002; 111: 837–851.

Graef P, Buchholz VR, Stemberger C, Flossdorf M, Henkel L, Schiemann M et al. Serial transfer of single-cell-derived immunocompetence reveals stemness of CD8(+) central memory T cells. Immunity 2014; 41: 116–126.

Gattinoni L, Lugli E, Ji Y, Pos Z, Paulos CM, Quigley MF et al. A human memory T cell subset with stem cell-like properties. Nat Med 2011; 17: 1290–1297.

Stemberger C, Huster KM, Koffler M, Anderl F, Schiemann M, Wagner H et al. A single naive CD8+ T cell precursor can develop into diverse effector and memory subsets. Immunity 2007; 27: 985–997.

Buchholz VR, Flossdorf M, Hensel I, Kretschmer L, Weissbrich B, Graf P et al. Disparate individual fates compose robust CD8+ T cell immunity. Science 2013; 340: 630–635.

Gerlach C, Rohr JC, Perie L, van Rooij N, van Heijst JW, Velds A et al. Heterogeneous differentiation patterns of individual CD8+ T cells. Science 2013; 340: 635–639.

Rocha B, Tanchot C . Towards a cellular definition of CD8+ T-cell memory: the role of CD4+ T-cell help in CD8+ T-cell responses. Curr Opin Immunol 2004; 16: 259–263.

Mitsuyasu RT, Anton PA, Deeks SG, Scadden DT, Connick E, Downs MT et al. Prolonged survival and tissue trafficking following adoptive transfer of CD4zeta gene-modified autologous CD4(+) and CD8(+) T cells in human immunodeficiency virus-infected subjects. Blood 2000; 96: 785–793.

Walker RE, Bechtel CM, Natarajan V, Baseler M, Hege KM, Metcalf JA et al. Long-term in vivo survival of receptor-modified syngeneic T cells in patients with human immunodeficiency virus infection. Blood 2000; 96: 467–474.

Mackall CL, Fleisher TA, Brown MR, Andrich MP, Chen CC, Feuerstein IM et al. Age, thymopoiesis, and CD4+ T-lymphocyte regeneration after intensive chemotherapy. N Engl J Med 1995; 332: 143–149.

Hakim FT, Cepeda R, Kaimei S, Mackall CL, McAtee N, Zujewski J et al. Constraints on CD4 recovery postchemotherapy in adults: thymic insufficiency and apoptotic decline of expanded peripheral CD4 cells. Blood 1997; 90: 3789–3798.

Terakura S, Yamamoto TN, Gardner RA, Turtle CJ, Jensen MC, Riddell SR . Generation of CD19-chimeric antigen receptor modified CD8+ T cells derived from virus-specific central memory T cells. Blood 2012; 119: 72–82.

Hudecek M, Sommermeyer D, Kosasih PL, Silva-Benedict A, Liu L, Rader C et al. The nonsignaling extracellular spacer domain of chimeric antigen receptors is decisive for in vivo antitumor activity. Cancer Immunol Res 2015; 3: 125–135.

Zola H, MacArdle PJ, Bradford T, Weedon H, Yasui H, Kurosawa Y . Preparation and characterization of a chimeric CD19 monoclonal antibody. Immunol Cell Biol 1991; 69: 411–422.

Whitlow M, Bell BA, Feng SL, Filpula D, Hardman KD, Hubert SL et al. An improved linker for single-chain Fv with reduced aggregation and enhanced proteolytic stability. Protein Engineer 1993; 6: 989–995.

Wang X, Chang WC, Wong CW, Colcher D, Sherman M, Ostberg JR et al. A transgene-encoded cell surface polypeptide for selection, in vivo tracking, and ablation of engineered cells. Blood 2011; 118: 1255–1263.

Hudecek M, Schmitt TM, Baskar S, Lupo-Stanghellini MT, Nishida T, Yamamoto TN et al. The B-cell tumor-associated antigen ROR1 can be targeted with T cells modified to express a ROR1-specific chimeric antigen receptor. Blood 2010; 116: 4532–4541.

Leisegang M, Engels B, Meyerhuber P, Kieback E, Sommermeyer D, Xue SA et al. Enhanced functionality of T cell receptor-redirected T cells is defined by the transgene cassette. J Mol Med 2008; 86: 573–583.

Lee DW, Kochenderfer JN, Stetler-Stevenson M, Cui YK, Delbrook C, Feldman SA et al. T cells expressing CD19 chimeric antigen receptors for acute lymphoblastic leukaemia in children and young adults: a phase 1 dose-escalation trial. Lancet 2015; 385: 517–528.

Stemberger C, Dreher S, Tschulik C, Piossek C, Bet J, Yamamoto TN et al. Novel serial positive enrichment technology enables clinical multiparameter cell sorting. PloS One 2012; 7: e35798.

Hinrichs CS, Borman ZA, Cassard L, Gattinoni L, Spolski R, Yu Z et al. Adoptively transferred effector cells derived from naive rather than central memory CD8+ T cells mediate superior antitumor immunity. Proc Natl Acad Sci USA 2009; 106: 17469–17474.

Berger C, Jensen MC, Lansdorp PM, Gough M, Elliott C, Riddell SR . Adoptive transfer of effector CD8+ T cells derived from central memory cells establishes persistent T cell memory in primates. J Clin Invest 2008; 118: 294–305.

Wang X, Berger C, Wong CW, Forman SJ, Riddell SR, Jensen MC . Engraftment of human central memory-derived effector CD8+ T cells in immunodeficient mice. Blood 2011; 117: 1888–1898.

Moeller M, Haynes NM, Kershaw MH, Jackson JT, Teng MW, Street SE et al. Adoptive transfer of gene-engineered CD4+ helper T cells induces potent primary and secondary tumor rejection. Blood 2005; 106: 2995–3003.

Moeller M, Kershaw MH, Cameron R, Westwood JA, Trapani JA, Smyth MJ et al. Sustained antigen-specific antitumor recall response mediated by gene-modified CD4+ T helper-1 and CD8+ T cells. Cancer Res 2007; 67: 11428–11437.

Riches JC, Davies JK, McClanahan F, Fatah R, Iqbal S, Agrawal S et al. T cells from CLL patients exhibit features of T-cell exhaustion but retain capacity for cytokine production. Blood 2013; 121: 1612–1621.

Kiaii S, Clear AJ, Ramsay AG, Davies D, Sangaralingam A, Lee A et al. Follicular lymphoma cells induce changes in T-cell gene expression and function: potential impact on survival and risk of transformation. J Clin Oncol 2013; 31: 2654–2661.

Kochenderfer JN, Dudley ME, Kassim SH, Somerville RP, Carpenter RO, Stetler-Stevenson M et al. Chemotherapy-refractory diffuse large B-cell lymphoma and indolent B-cell malignancies can be effectively treated with autologous T cells expressing an anti-CD19 chimeric antigen receptor. J Clin Oncol 2015; 33: 540–549.

Berger C, Berger M, Anderson D, Riddell SR . A non-human primate model for analysis of safety, persistence, and function of adoptively transferred T cells. J Med Primatol 2011; 40: 88–103.

Klebanoff CA, Gattinoni L, Torabi-Parizi P, Kerstann K, Cardones AR, Finkelstein SE et al. Central memory self/tumor-reactive CD8+ T cells confer superior antitumor immunity compared with effector memory T cells. Proc Natl Acad Sci USA 2005; 102: 9571–9576.

Gattinoni L, Zhong XS, Palmer DC, Ji Y, Hinrichs CS, Yu Z et al. Wnt signaling arrests effector T cell differentiation and generates CD8+ memory stem cells. Nat Med 2009; 15: 808–813.