Chimeral Clustering
Tóm tắt
Từ khóa
Tài liệu tham khảo
Anderson, E. (1936). The species problem in Iris. Annals of the Missouri Botanical Garden, 23(3), 457–509.
Banfield, J.D., & Raftery, A.E. (1993). Model-based Gaussian and non-Gaussian clustering. Biometrics, 49(3), 803–821.
Battle, A., Segal, E., & Koller, D. (2005). Probabilistic discovery of overlapping cellular processes and their regulation. Journal of Computational Biology, 12(7), 909–927. pMID 16201912.
Biernacki, C., Celeux, G., & Govaert, G. (2003). Choosing starting values for the em algorithm for getting the highest likelihood in multivariate gaussian mixture models. Computational Statistics & Data Analysis, 41(3), 561–575. recent Developments in Mixture Model.
Blei, D.M., Ng, A.Y., & Jordan, M.I. (2003). Latent Dirichlet allocation. Journal of Machine Learning Research, 3, 993–1022.
Browne, R.P., & McNicholas, P.D. (2014). Estimating common principal components in high dimensions. Advances in Data Analysis and Classification, 8(2), 217–226.
Cannon, A., Cobb, G., Hartlaub, B., Legler, J., Lock, R., Moore, T., Rossman, A., & Witmer, J. (2019). Stat2data: Datasets for Stat2. R package version 2.0.0.
Celeux, G., & Govaert, G. (1995). Gaussian parsimonious clustering models. Pattern Recognition, 28(5), 781–793.
Clarkson, D.B., & Jennrich, R.I. (1988). Quartic rotation criteria and algorithms. Psychometrika, 53(2), 251–259.
De Leeuw, J., & Heiser, W.J. (1977). Convergence of correction matrix algorithms for multidimensional scaling. Geometric Representations of Relational Data, 735–752.
Dempster, A.P., Laird, N.M., & Rubin, D.B. (1977). Maximum likelihood from incomplete data via the EM algorithm. Journal of the Royal Statistical Society: Series B (Methodological), 39(1), 1–22.
Erosheva, E.A., Fienberg, S.E., & Joutard, C. (2007). Describing disability through individual-level mixture models for multivariate binary data. The Annals of Applied Statistics, 1(2), 346–384. 21687832[pmid].
Fisher, R.A. (1936). The use of multiple measurements in taxonomic problems. Annals of Eugenics, 7(2), 179–188.
Fraley, C., & Raftery, A.E. (2002). Model-based clustering, discriminant analysis, and density estimation. Journal of the American Statistical Association, 97(458), 611–631.
Hansen, F., & Pedersen, G.K. (2003). Jensen’s operator inequality. Bulletin of the London Mathematical Society, 35(4), 553–564.
Heller, K.A., Williamson, S., & Ghahramani, Z. (2008). Statistical models for partial membership. In Proceedings of the 25th international conference on machine learning, association for computing machinery, New York, NY, USA, ICML ’08 (pp. 392–399).
Holzmann, H., Munk, A., & Gneiting, T. (2006). Identifiability of finite mixtures of elliptical distributions. Scandinavian Journal of Statistics, 33 (4), 753–763.
Hunter, D.R., & Lange, K. (2004). A tutorial on MM algorithms. The American Statistician, 58(1), 30–37.
Kaiser, H.F. (1958). The varimax criterion for analytic rotation in factor analysis. Psychometrika, 23(3), 187–200.
Klingenberg, C.P., & Spence, J.R. (1993). Heterochrony and allometry: Lessons from the water strider genus limnoporus. Evolution, 47(6), 1834–1853.
Laub, A. (1979). A Schur method for solving algebraic Riccati equations. IEEE Transactions on Automatic Control, 24(6), 913–921.
McNicholas, P.D., & Murphy, T.B. (2008). Parsimonious gaussian mixture models. Statistics and Computing, 18(3), 285–296.
Meng, X.L., & Rubin, D.B. (1993). Maximum likelihood estimation via the ECM algorithm: a general framework. Biometrika, 80(2), 267–278.
Ortega, J.M., & Rheinboldt, W.C. (2000). Iterative solution of nonlinear equations in several variables. Society for industrial and applied mathematics.
Pritchard, J.K., Stephens, M., & Donnelly, P. (2000). Inference of population structure using multilocus genotype data. Genetics, 155(2), 945.
Rand, W.M. (1971). Objective criteria for the evaluation of clustering methods. Journal of the American Statistical Association, 66(336), 846–850.
Scrucca, L., Fop, M., Murphy, T.B., & Raftery, A.E. (2016). mclust 5: Clustering, classification and density estimation using Gaussian finite mixture models. The R Journal, 8(1), 289–317.
Shapiro, A. (1985). Identifiability of factor analysis: some results and open problems. Linear Algebra and its Applications, 70, 1–7.
Symons, M.J. (1981). Clustering criteria and multivariate normal mixtures. Biometrics, 37(1), 35–43.
Teicher, H. (1961). Maximum likelihood characterization of distributions. Annals of Mathematical Statistics, 32(4), 1214–1222.
Wolfe, J.H. (1963). Object cluster analysis of social areas. PhD thesis, University of California.
Woodbury, M.A., Clive, J., & Garson, A. (1978). Mathematical typology: a grade of membership technique for obtaining disease definition. Computers and Biomedical Research, 11(3), 277–298.
Yakowitz, S.J., & Spragins, J.D. (1968). On the identifiability of finite mixtures. Annals of Mathematical Statistics, 39(1), 209–214.