Chemotherapy and the pediatric brain

Chrysanthy Ikonomidou1
1Department of Neurology, Section of Child Neurology, University of Wisconsin Madison, Madison, WI, 53705, USA

Tóm tắt

Từ khóa


Tài liệu tham khảo

Henderson TO, Friedman DL, Meadows AT (2010) Childhood cancer survivors: transition to adult-focused risk-based care. Pediatrics 126:129–136

Kadan-Lottick NS, Zeltzer LK, Liu Q et al (2010) Neurocognitive functioning in adult survivors of childhood noncentral nervous system cancers. J Natl Cancer Inst 102:881–893

Oeffinger KC, Nathan PC, Kremer LC (2010) Challenges after curative treatment for childhood cancer and long-term follow up of survivors. Hematol Oncol Clin North Am 24:129–149

Zeltzer LK, Recklitis C, Buchbinder D et al (2009) Psychological status in childhood cancer survivors: a report from the Childhood Cancer Survivor Study. J Clin Oncol 27:2396–2404

Sleurs C, Lemiere J, Vercruysse T et al (2017) Intellectual development of childhood ALL patients: a multicenter longitudinal study. Psycho-Oncology 26:508–514

Duffner PK, Armstrong FD, Chen L et al (2014) Neurocognitive and neuroradiologic central nervous system late effects in children treated on Pediatric Oncology Group (POG) P9605 (standard risk) and P9201 (lesser risk) acute lymphoblastic leukemia protocols (ACCL0131): a methotrexate consequence? A report from the Children’s Oncology Group. J Pediatr Hematol Oncol 36:8–15

Anderson FS, Kunin-Batson AS (2009) Neurocognitive late effects of chemotherapy in children: the past 10 years of research on brain structure and function. Pediatr Blood Cancer 52:159–164

Ashford J, Schoffstall C, Reddick WE et al (2010) Attention and working memory abilities in children treated for acute lymphoblastic leukemia. Cancer 116:1173–1186

Buizer AI, de Sonneville LM, Veerman AJ (2009) Effects of chemotherapy on neurocognitive function in children with acute lymphoblastic leukemia: a critical review of the literature. Pediatr Blood Cancer 52:447–454

Lofstad GE, Reinfjell T, Hestad K et al (2009) Cognitive outcome in children and adolescents treated for acute lymphoblastic leukaemia with chemotherapy only. Acta Paediatr 98:180–186

Moleski M (2000) Neuropsychological, neuroanatomical, and neurophysiological consequences of CNS chemotherapy for acute lymphoblastic leukemia. Arch Clin Neuropsychol 15:603–630

von der Weid N, Mosimann I, Hirt A et al (2003) Intellectual outcome in children and adolescents with acute lymphoblastic leukaemia treated with chemotherapy alone: age- and sex-related differences. Eur J Cancer 39:359–365

Jansen NC, Kingma A, Schuitema A et al (2008) Neuropsychological outcome in chemotherapy-only-treated children with acute lymphoblastic leukemia. J Clin Oncol 26:3025–3030

Bhojwani D, Sabin ND, Pei D et al (2014) Methotrexate-induced neurotoxicity and leukoencephalopathy in childhood acute lymphoblastic leukemia. J Clin Oncol 32:949–959

Carey ME, Haut MW, Reminger SL et al (2008) Reduced frontal white matter volume in long-term childhood leukemia survivors: a voxel-based morphometry study. AJNR Am J Neuroradiol 29:792–797

Genschaft M, Huebner T, Plessow F et al (2013) Impact of chemotherapy for childhood leukemia on brain morphology and function. PLOS One 8(11):e78599. https://doi.org/10.1371/journal.pone.0078599

Asato R, Akiyama Y, Ito M et al (1992) Nuclear magnetic resonance abnormalities of the cerebral white matter in children with acute lymphoblastic leukemia and malignant lymphoma during and after central nervous system prophylactic treatment with intrathecal methotrexate. Cancer 70:1997–2004

Dellani PR, Eder S, Gawehn J et al (2008) Late structural alterations of cerebral white matter in long-term survivors of childhood leukemia. J Magn Reson Imaging 27:1250–1255

Reddick WE, Glass JO, Johnson DP, Laningham FH, Pui C-H (2009) Voxel-based analysis of T2 hyperintensities in white matter during treatment of childhood leukemia. Am J Neuroradiol 30:1947–1954

Deprez S, Amant F, Smeets A et al (2012) Longitudinal assessment of chemotherapy-induced changes in cerebral white matter and its correlation with impaired cognitive functioning. J Clin Oncol 30:274–281

Khong P-L, Leung LHT, Fung ASM et al (2006) White matter anisotropy in post-treatment childhood cancer survivors: preliminary evidence of association with neurocognitive function. J Clin Oncol 24:884–890

Edelmann MN, Krull KR, Liu W et al (2014) Diffusion tenson imaging and neurocognition in survivors of childhood acute lymphoblastic leukaemia. Brain 137:2973–2983

ElAlfy M, Ragab I, Azab I, Amin S, Abdel-Maguid M (2014) Neurocognitive outcome and white matter anisotropy in childhood acute lymphoblastic leukemia survivors treated with different protocols. Pediatr Hematol Oncol 31:194–204

Kesler SR, Gugel M, Huston-Warren E, Watson C (2016) Atypical structural connectome organization and cognitive impairment in young survivors of acute lymphoblastic leukemia. Brain Connect 6:273–282

Sleurs C, Lemiere J, Christiaens D et al (2018) Advanced MR diffusion imaging and chemotherapy-related changes in cerebral white matter microstructure of survivors of childhood bone and soft tissue sarcoma. Hum Brain Mapp:1–13

McDonald BC, Conroy SK, Ahles TA, West JD, Saykin AJ (2010) Gray matter reduction associated with systemic chemotherapy for breast cancer: a prospective MRI study. Breast Canc Res Treat 123:819–828

McDonald BC, Conroy SK, Smith DJ, West JD, Saykin AJ (2013) Frontal gray matter reduction after breast cancer chemotherapy and association with executive symptoms: a replication and extension study. Brain Behav Immun 30:S117–S125

Tamnes CT, Zeller B, Amlien IK et al (2015) Cortical surface area and thickness in adult survivors of pediatric acute lymphoblastic leukemia. Pediatr Blood Cancer 62:1027–1034

Oesterlundh G, Kjellmer I, Lannering B et al (2008) Neurochemical markers of brain damage in cerebrospinal fluid during induction treatment of acute lymphoblastic leukemia in children. Pediatr Blood Cancer 50:793–798

Quinn CT, Griener JC, Bottiglieri T et al (1997) Elevation of homocysteine and excitatory amino acid neurotransmitters in the CSF of children who receive methotrexate for the treatment of cancer. J Clin Oncol 15:2800–2806

Viacha V, Eliopoulou M, Haidas S, Beratis NG (2004) Correlation of cerebrospinal fluid betal-glucuronidase activity with plasma methotrexate concentrations in leukemic children receiving high-dose methotrexate. Pediatr Blood Cancer 42:350–356

Chiaretti A, Ruggiero A, Coccia P et al (2011) Expression of liquoral neuroprotection markers in children with acute lymphoblastic leukemia. Leukemia Res 35:1467–1471

Van Gool SW, De Meyer G, van de Voorde A, Vanmechelen E, Vanderstichele H (2004) Neurotoxicity marker profiles in the CSF are not age-dependent but show variation in children treated for acute lymphoblastic leukemia. Neurotoxicology 25:471–480

Krawczuk-Rybak M, Grabowska A, Protal PT, Muszynska-Roslan K, Braszko J (2012) Intellectual functioning of childhood leukemia survivors – relation to Tau protein – a marker of white matter injury. Adv Med Sci 57:266–272

Caron JE, Krull KR, Hockenberry M et al (2009) Oxidative stress and executive function in children receiving chemotherapy for acute lymphoblastic leukemia. Pediatr Blood Cancer 53:551–556

Taylor OA, Hockenberry MJ, McCarthy K et al (2015) Evaluation of biomarkers of oxidative stress and apoptosis in patients with severe methotrexate neurotoxicity: a case series. J Pediatr Oncol Nurs 32:320–325

Cole PD, Beckwith KA, Vijayanathan V et al (2009) Folate homeostasis in cerebrospinal fluid during therapy for acute lymphoblastic leukemia. Pediatr Neurol 40:34–41

DeVita V, Hellman S, Rosenberg S (2005) Cancer: principles&practice of oncology, 7th edn, pp 332–422

Seigers R, Fardell JE (2011) Neurobiological basis of chemotherapy-induced cognitive impairment: a review of rodent research. Neurosci Biobehav Rev 35:729–741

Seigers R, Schagen SB, Beerling W et al (2008) Long-lasting suppression of hippocampal cell proliferation and impaired cognitive performance by methotrexate in the rat. Behav Brain Res 186:168–175

Seigers R, Schagen SB, Coppens CM et al (2009) Methotrexate decreases hippocampal cell proliferation and induces memory deficits in rats. Behav Brain Res 2:279–284

Geller HM, Cheng KY, Goldsmith NK et al (2001) Oxidative stress mediates neuronal DNA damage and apoptosis in response to cytosine arabinoside. J Neurochem 78:265–275

Husain K, Whitworth C, Hazelrigg S, Rybak L (2003) Carboplatin-induced oxidative injury in rat inferior colliculus. Int J Toxicol 22:335–342

Husain K, Whitworth C, Somani SM, Rybak LP (2001) Carboplatin-induced oxidative stress in rat cochlea. Hear Res 159:14–22

Oboh G, Ogunruku OO (2010) Cyclophosphamide-induced oxidative stress in brain: protective effect of hot short pepper (Capsicum frutescens L. var. abbreviatum). Exp Toxicol Pathol 63:227–233

Koros C, Kitraki E (2009) Neurofilament isoform alterations in the rat cerebellum following cytosine arabinoside administration. Toxicol Lett 189:215–218

Joshi G, Sultana R, Tangpong J et al (2005) Free radical mediated oxidative stress and toxic side effects in brain induced by the anti cancer drug adriamycin: insight into chemobrain. Free Radic Res 39:1147–1154

Montilla P, Tunez I, Munoz MC, Soria JV, Lopez A (1997) Antioxidative effect of melatonin in rat brain oxidative stress induced by Adriamycin. Rev Esp Fisiol 53:301–305

Öz E, Ilhan MN (2006) Effects of melatonin in reducing the toxic effects of doxorubicin. Mol Cell Biochem 286:11–15

Rajamani R, Muthuvel A, Senthilvelan M, Sheeladevi R (2006) Oxidative stress induced by methotrexate alone and in the presence of methanol in discrete regions of the rodent brain, retina and optic nerve. Toxicol Lett 165:265–273

Uzar E, Koyuncuoglu HR, Uz E et al (2006) The activities of antioxidant enzymes and the level of malondialdehyde in cerebellum of rats subjected to methotrexate: protective effect of caffeic acid phenethyl ester. Mol Cell Biochem 291:63–68

Dietrich J, Han R, Yang Y, Mayer-Proschel M, Noble M (2006) CNS progenitor cells and oligodendrocytes are targets of chemotherapeutic agents in vitro and in vivo. J Biol 5:22.1–22.23

Dietrich J, Prust M, Kaiser J (2015) Chemotherapy, cognitive impairment and hippocampal toxicity. Neuroscience 308:224–232

Han R, Yang YM, Dietrich J et al (2008) Systemic 5-fluorouracil treatment causes a syndrome of delayed myelin destruction in the central nervous system. J Biol 7:12.1–12.22

Mignone RG, Weber ET (2006) Potent inhibition of cell proliferation in the hippocampal dentate gyrus of mice by the chemotherapeutic drug thioTEPA. Brain Res 1111:26–29

Mondie CM, Vandergrift KA, Wilson CL, Gulinello ME, Weber ET (2010) The chemotherapy agent, thioTEPA, yields long-term impairment of hippocampal cell proliferation and memory deficits but not depression-related behaviors in mice. Behav Brain Res 209:66–72

Mustafa S, Walker A, Bennett G, Wigmore PM (2008) 5-Fluorouracil chemotherapy affects spatial working memory and newborn neurons in the adult rat hippocampus. Eur J Neurosci 28:323–330

Yang M, Kim JS, Song MS et al (2010) Cyclophosphamide impairs hippocampus-dependent learning and memory in adult mice: possible involvement of hippocampal neurogenesis in chemotherapy-induced memory deficits. Neurobiol Learn Mem 93:487–494

Bittigau P, Sifringer M, Pohl D (1999) Apoptotic neurodegeneration following trauma is markedly enhanced in the immature brain. Ann Neurol 45:724–735

Bossy-Wetzel E, Barsoum MJ, Godzik A et al (2003) Mitochondrial function in apoptosis, neurodegeneration and aging. Curr Opin Cell Biol 15:706–716

Lipton SA, Rosenberg PA (1994) Excitatory amino acids as a final common pathway for neurologic disorders. N Engl J Med 330:613–622

Murphy AN, Fiskum G, Beal MF (1999) Mitochondria in neurodegeneration: bioenergetic function in cell life and death. J Cereb Blood Flow Metab 19:231–245

Rothman SM, Olney JW (1995) Excitotoxicity and the NMDA receptor—still lethal after eight years. Trends Neurosci 18:57–58

Lee JM, Zipfel GJ, Choi DW (1999) The changing landscape of ischaemic brain injury mechanisms. Nature 399(suppl):A7–A14

Bonfoco E, Krainc D, Ankarcrona M et al (1995) Apoptosis and necrosis: two distinct events induced, respectively, by mild and intense insults with N-methyl-D-aspartate or nitric oxide/superoxide in cortical cell cultures. Proc Natl Acad Sci U S A 92:7162–7166

Northington FJ, Ferriero DM, Graham EM et al (2001) Early neurodegeneration after hypoxia-ischemia in neonatal rat is necrosis while delayed neuronal death is apoptosis. Neurobiol Dis 8:207–219

Pohl D, Bittigau P, Ishimaru MJ et al (1999) NMDA antagonists and apoptotic cell death triggered by head trauma in developing rat brain. Proc Natl Acad Sci U S A 96:2508–2513

Rzeski W, Pruskil S, Macke A et al (2004) Anticancer agents are potent neurotoxins in vitro and in vivo. Ann Neurol 56:351–360

Courtney MJ, Coffey ET (1999) The mechanism of Ara-C-induced apoptosis of differentiating cerebellar granule neurons. Eur J Neurosci 11:1073–1084

Wick A, Wick W, Hirrlinger J et al (2004) Chemotherapy-induced cell death in primary cerebellar granule neurons but not in astrocytes: in vitro paradigm of differential neurotoxicity. J Neurochem 91:1067–1074

Gregorios JB, Gregorios AB, Mora J et al (1989) Morphologic alterations in rat brain following systemic and intraventricular methotrexate injection: light and electron microscopic studies. J Neuropathol Exp Neurol 48:33–47

Das S, Basu A (2008) Inflammation: a new candidate in modulating adult neurogenesis. J Neurosci Res 86:1199–1208

de Koning BA, van Dieren JM, Lindenbergh-Kortleve DJ et al (2006) Contributions of mucosal immune cells to methotrexate-induced mucositis. Int Immunol 18:941–949

De Visser KE, Eichten A, Coussens LM (2006) Paradoxical roles of the immune system during cancer development. Nat Rev Cancer 6:24–37

Ekdahl CT, Claasen JH, Bonde S, Kokaia Z, Lindvall O (2003) Inflammation is detrimental for neurogenesis in adult brain. Proc Natl Acad Sci U S A 100:13632–13637

Seruga B, Zhang H, Bernstein LJ, Tannock IF (2008) Cytokines and their relationship to the symptoms and outcome of cancer. Nat Rev Cancer 8:887–899

Wilson CJ, Finch CE, Cohen HJ (2002) Cytokines and cognition—the case for a head-to-toe inflammatory paradigm. J Am Geriatr Soc 50:2041–2056

de Vos FY, Willemse PH, De Vries EG, Gietema JA (2004) Endothelial cell effects of cytotoxics: balance between desired and unwanted effects. Cancer Treat Rev 30:495–513

Mizusawa S, Kondoh Y, Murakami M et al (1988) Effect of methotrexate on local cerebral blood flow in conscious rats. Jpn J Pharmacol 48:499–501

Seigers R, Timmermans J, van der Horn HJ et al (2010) Methotrexate reduces hippocampal blood vessel density and activates microglia in rats but does not elevate central cytokine release. Behav Brain Res 207:265–272

Theruvath AJ, Ilivitzki A, Muehe A et al (2017) A PET/MRI imaging approach for the integrated assessment of chemotherapy-induced brain, heart, and bone injuries in pediatric cancer survivors: a pilot study. Radiology 285:971–979

Daneman R, Zhou L, Kebede AA, Barres BA (2010) Pericytes are required for blood-brain barrier integrity during embryogenesis. Nature 468:562–566

Saunders NR, Knott GW, Dziegielewska KM (2000) Barriers in the immature brain. Cell Mol Neurobiol 20:29–40

Virgintino D, Errede M, Girolamo F et al (2008) Fetal blood-brain barrier P-glycoprotein contributes to brain protection during human development. J Neuropathol Exp Neurol 67:50–61

de Vries NA, Beijnen JH, Boogerd W, van Tellingen O (2006) Blood–brain barrier and chemotherapeutic treatment of brain tumors. Expert Rev Neurother 6:1199–1209

Perry A, Schmidt RE (2006) Cancer therapy-associated CNS neuropathology: an update and review of the literature. Acta Neuropathol 111:197–212

Briones TL, Woods J (2011) Chemotherapy-induced cognitive impairment is associated with decreases in cell proliferation and histone modifications. BMC Neurosci 12:124

Briones TL, Woods J (2013) Dysregulation in myelination mediated by persistent neuroinflammation: possible mechanisms in chemotherapy-related cognitive impairment. Brain Behav Immun 35:23–32

Lyons L, Elbeltagy M, Bennett G, Wigmore P (2011) The effects of cyclophosphamide on hippocampal cell proliferation and spatial working memory in rat. PLoS One 6:e21445

Lee GD, Longo DI, Wang Y et al (2006) Transient improvement in cognitive function and synaptic plasticity in rats following cancer chemotherapy. Clin Cancer Res 12:198–205

Xiao R, Yu HL, Zhao HF et al (2007) Developmental neurotoxicity role of cyclophosphamide onpost-neural tube closure of rodents in vitro and in vivo. Int J Dev Neurosci 25:531–537

Avella D, Pisu MB, Roda E, Gravati M, Bernocchi G (2006) Reorganization of the rat cerebellar cortex during postnatal development following cisplatin treatment. Exp Neurol 201:131–143

Andres AL, Gong C, Di K, Bota DA (2014) Low-doses of cisplatin injure hippocampal synapses: a mechanism for ‘chemo’ brain? Exp Neurol 255:137–144

Cerri S, Piccolini VM, Santin G et al (2011) The developmental neurotoxicity study of platinum compounds: effects of cisplatin versus a novel Pt(II) complex on rat cerebellum. Neurotoxicol Teratol 33:273–281

Gopal KV, Wu C, Shrestha B et al (2012) D-Methionine protects against cisplatin-induced neurotoxicity in cortical networks. Neurotoxicol Teratol 34:495–504

Sugimoto S, Yamamoto YL, Nagahiro S, Diksic M (1995) Permeability change and brain tissue damage after intracarotid administration of cisplatin studied by double-tracer autoradiography in rats. J Neuro-Oncol 24:229–240

Piccolini VM, Cerri S, Romanelli E, Bernocchi G (2012) Interactions of neurotransmitter systems duringpostnatal development of the rat hippocampal formation: effects of cisplatin. Exp Neurol 234:239–252

Turan MI, Cayir A, Cetin N et al (2014) An investigation of the effect of thiamine pyrophosphateon cisplatin-induced oxidative stress and DNA damage in rat brain tissue compared with thiamine: thiamine and thiamine pyrophosphate effects on cisplatin neurotoxicity. Hum Exp Toxicol 33:14–21

van der Plas E, Schachar RJ, Hitzler J et al (2016) Brain structure, working memory and response inhibition in childhood leukemia survivors. Brain Behav 7:e00621

Cossaart N, SantaCruz KS, Preston D, Johnson P, Skikne BS (2003) Fatal chemotherapy-induced encephalopathy following high-dose therapy for metastatic breast cancer: a case report and review of the literature. Bone Marrow Transplant 31:57–60

Cruz-Sanchez FF, Artigas J, Cervos-Navarro J, Rossi ML, Ferszt R (1991) Brain lesions following combined treatment with methotrexate and craniospinal irradiation. J Neuro-Oncol 10:165–171

Fassas AB, Gattani AM, Morgello S (1994) Cerebral demyelination with 5-fluorouracil and levamisole. Cancer Investig 12:379–383

Liu HM, Maurer HS, Vongsvivut S, Conway JJ (1978) Methotrexate encephalopathy. A neuropathologic study. Hum Pathol 9:635–648

Moore-Maxwell CA, Datto MB, Hulette CM (2004) Chemotherapy-induced toxic leukoencephalopathy causes a wide range of symptoms: a series of four autopsies. Mod Pathol 17:241–247

Antunes NL, Souweidane MM, Lis E, Rosenblum MK, Steinherz PG (2002) Methotrexate leukoencephalopathy presenting as Kluver–Bucy syndrome and uncinate seizures. Pediatr Neurol 26:305–308

DeAngelis LM, Seiferheld W, Schold SC, Fisher B, Schultz CJ (2002) Combination chemotherapy and radiotherapy for primary central nervous system lymphoma: radiation therapy oncology group study 93–10. J Clin Oncol 20:4643–4648

Lai R, Abrey LE, Rosenblum MK, DeAngelis LM (2004) Treatment-induced leukoencephalopathy in primary CNS lymphoma: a clinical and autopsy study. Neurology 62:451–456

Rubinstein LJ, Herman MM, Long TF, Wilbur JR (1975) Disseminated necrotizing leukoencephalopathy: a complication of treated central nervous system leukemia and lymphoma. Cancer 35:291–305

Stone JA, Castillo M, Mukherji SK (1999) Leukoencephalopathy complicating an Ommaya reservoir and chemotherapy. Neuroradiology 41:134–136

Abelson HT (1978) Methotrexate and central nervous system toxicity. Cancer Treat Rep 2:1999–2001

Allen JC, Rosen G, Mehta BM, Horten B (1980) Leukoencephalopathy following high-dose iv methotrexate chemotherapy with leucovorin rescue. Cancer Treat Rep 64:1261–1273

Omuro AM, DeAngelis LM, Yahalom J, Abrey LE (2005) Chemotherapy for primary CNS lymphoma: an intent-to-treat analysis with complete follow-up. Neurology 64:69-74

Lovblad K, Kelkar P, Ozdoba C et al (1998) Pure methotrexate encephalopathy presenting with seizures: CT and MRI features. Pediatr Radiol 28:86–91

de Waal R, Algra PR, Heimans JJ, Wolbers JG, Scheltens P (1993) Methotrexate induced brain necrosis and severe leukoencephalopathy due to disconnection of an Ommaya device. J Neuro-Oncol 15:269–273

Packer RJ, Zimmerman RA, Rosenstock J et al (1981) Focal encephalopathy following methotrexate therapy. Administration via a misplaced intraventricular catheter. Arch Neurol 38:450–452

Colamaria V, Caraballo R, Borgna-Pignatti C et al (1990) Transient focal leukoencephalopathy following intraventricular methotrexate and cytarabine. A complication of the Ommaya reservoir: case report and review of the literature. Childs Nerv Syst 6:231–235

Fouladi M, Chintagumpala M, Laningham FH et al (2004) White matter lesions detected by magnetic resonance imaging after radiotherapy and high-dose chemotherapy in children with medulloblastoma or primitive neuroectodermal tumor. J Clin Oncol 22:4551–4560

Rutkowski S, Bode U, Deinlein F et al (2005) Treatment of early childhood medulloblastoma by postoperative chemotherapy alone. N Engl J Med 352:978–986

Fouladi M, Langston J, Mulhern R et al (2000) Silent lacunar lesions detected by magnetic resonance imaging in children with brain tumors: a late sequela of therapy. J Clin Oncol 18:824-831

Rubnitz JE, Relling MV, Harrison PL et al (1998) Transient encephalopathy following high-dose methotrexate treatment in childhood acute lymphoblastic leukemia. Leukemia 12:1176–1181

Price RA, Jamieson PA (1975) The central nervous system in childhood leukemia. II. Subacute leukoencephalopathy. Cancer 35:306–318

Smith B (1975) Brain damage after intrathecal methotrexate. J Neurol Neurosurg Psychiatry 38:810–815

Rubinstein JL, Herman MM, Long TF, Wilbur JR (1975) Leukoencephalopathy following combined therapy of central nervous system leukemia and lymphoma. Acta Neuropathol Suppl (Berl) Suppl 6:251–255

Atlas SW, Grossman RI, Packer RJ et al (1987) Magnetic resonance imaging diagnosis of disseminated necrotizing leukoencephalopathy. J Comput Tomogr 11:39–43

Batara JF, Grossman SA (2003) Primary central nervous system lymphomas. Curr Opin Neurol 16:671–675

Sindwahni G, Arora M, Thakker VD, Jain A (2017) MRI in chemotherapy induced leukoencephalopathy: report of two cases and radiologist's perspective. J Clin Diagn Res TD08-TD09. https://doi.org/10.7860/JCDR/2017/29164.10248 .

Omuro AM, Ben-Porat LS, Panageas KS et al (2005) Delayed neurotoxicity in primary central nervous system lymphoma. Arch Neurol 62:1595–1600

Bashir R, Hochberg FH, Linggood RM, Hottleman K (1988) Pre-irradiation internal carotid artery BCNU in treatment of glioblastoma multiforme. J Neurosurg 68:917–919

Kleinschmidt-DeMasters BK (1986) Intracarotid BCNU leukoencephalopathy. Cancer 57:1276–1280

Kleinschmidt-DeMasters BK, Geier JM (1989) Pathology of high-dose intra-arterial BCNU. Surg Neurol 31:435–443

Rosenblum MK, Delattre JY, Walker RW, Shapiro WR (1989) Fatal necrotizing encephalopathy complicating treatment of malignant gliomas with intra-arterial BCNU and irradiation: a pathological study. J Neuro-Oncol 7:269–281

Hinchey J, Chaves C, Appignani B et al (1996) A reversible posterior leukoencephalopathy syndrome. N Engl J Med 334:494–500

Kahana A, Rowley HA, Weinstein JM (2005) Cortical blindness: clinical and radiologic findings in reversible posterior leukoencephalopathy syndrome: case report and review of the literature. Ophthalmology 112:e7–e11

Pavlakis SG, Frank Y, Chusid R (1999) Hypertensive encephalopathy, reversible occipitoparietal encephalopathy, or reversible posterior leukoencephalopathy: three names for an old syndrome. J Child Neurol 14:277–281

Rangi PS, Partridge WJ, Newlands ES, Waldman AD (2005) Posterior reversible encephalopathy syndrome: a possible late interaction between cytotoxic agents and general anaesthesia. Neuroradiology 47:586–590

Sanchez-Carpintero R, Narbona J, Lopez de Mesa R, Arbizu J, Sierrasesumaga L (2001) Transient posterior encephalopathy induced by chemotherapy in children. Pediatr Neurol 24:145–148

Schiff D, Lopes MB (2005) Neuropathological correlates of reversible posterior leukoencephalopathy. Neurocrit Care 2:303–305

Shin RK, Stern JW, Janss AJ, Hunter JV, Liu GT (2001) Reversible posterior leukoencephalopathy during the treatment of acute lymphoblastic leukemia. Neurology 56:388–391

Stott VL, Hurrell MA, Anderson TJ (2005) Reversible posterior leukoencephalopathy syndrome: a misnomer reviewed. Intern Med J 35:83–90

Tam CS, Galanos J, Seymour JF et al (2004) Reversible posterior leukoencephalopathy syndrome complicating cytotoxic chemotherapy for hematologic malignancies. Am J Hematol 77:72–76