Tính hóa tự dưỡng trong các chủng vi khuẩn từ tính biển MV-1 và MV-2

Archiv für Mikrobiologie - Tập 182 - Trang 373-387 - 2004
Dennis A. Bazylinski1, Linda Kimble Long2,3, Timothy J. Williams1, Bradley L. Dubbels4,3, Shawna L. Middleton3,5, Annette J. Dean6,3
1Department of Biochemistry, Biophysics, and Molecular Biology, Iowa State University, Ames, USA
2Schaumburg, USA
3Graduate Program in Microbiology, Iowa State University, Ames, USA
4Laboratory for Nitrogen Fixation Research, Department of Botany and Plant Pathology, Oregon State University, Corvallis, USA
5Mycogen Seeds, Marshalltown, USA
6Pioneer Hy-Bred International, Inc., Johnston, USA

Tóm tắt

Các vi khuẩn từ tính sản xuất magnetite thu được từ vùng chuyển tiếp oxic-anoxic của các môi trường biển phân tầng hóa học với đặc trưng là các độ dốc ngược O2/H2S, chứa các bao bọc giàu S bên trong giống như các globule S nguyên tố, cho thấy chúng có khả năng oxi hóa các hợp chất S đã giảm có thể hỗ trợ cho sự tự dưỡng. Hai chủng vi khuẩn từ tính biển, MV-1 và MV-2, được phân lập từ các vị trí như vậy đã phát triển trong môi trường có độ dốc O2 với H2S hoặc thiosulfate (S2O32−) làm nguồn điện tử và O2 là chất nhận điện tử hoặc kỵ khí với S2O32− và N2O làm chất nhận điện tử, với bicarbonate (HCO3−)/CO2 là nguồn C duy nhất. Các tế bào phát triển với H2S chứa các bao bọc giàu S. Các tế bào oxi hóa S2O32− thành sulfate (SO42−). Cả hai chủng đều phát triển vi hiếu khí với formate. Không có chủng nào phát triển vi hiếu khí với tetrathionate (S4O62−), methanol, hoặc Fe2+ dưới dạng FeS, hoặc siderite (FeCO3). Sự phát triển với S2O32− và bicarbonate radiolabeled 14C-HCO3− cho thấy C trong tế bào được tạo ra từ HCO3−/CO2. Các chiết xuất không tế bào cho thấy hoạt tính của ribulose 1,5-bisphosphate carboxylase/oxygenase (RubisCO). Phân tích Southern blot chỉ ra sự tồn tại của một dạng II RubisCO (cbbM) nhưng không có dạng I (cbbL) trong cả hai chủng. cbbM và cbbQ, một kích hoạt giả thuyết sau dịch mã của RubisCO, đã được xác định trong MV-1. Do đó, MV-1 và MV-2 là các sinh vật hóa tự dưỡng sử dụng con đường Calvin–Benson–Bassham. cbbM cũng được xác định trong Magnetospirillum magnetotacticum. Như vậy, các vi khuẩn từ tính ở vùng chuyển tiếp oxic-anoxic của các môi trường nước hóa học phân tầng đóng vai trò quan trọng trong vòng tuần hoàn C và năng suất sơ cấp.

Từ khóa

#vi khuẩn từ tính #tự dưỡng hóa học #oxi hóa sulfur #con đường Calvin-Benson-Bassham #năng suất sơ cấp

Tài liệu tham khảo

American Type Culture Collection (1989) Catalogue of bacteria and bacteriophages, 17th edn. American Type Culture Collection, Rockville Baker SH, Jin S, Aldrich HC, Howard GT, Shively JM (1998) Insertion mutation of the form I cbbL gene encoding ribulose bisphosphate carboxylase/oxygenase (RuBisCO) in Thiobacillus neapolitanus results in expression of form II RuBisCO, loss of carboxysomes, and an increased CO2 requirement for growth. J Bacteriol 180:4133–4139 Bazylinski DA, Blakemore RP (1983) Denitrification and assimilatory nitrate reduction in Aquaspirillum magnetotacticum. Appl Environ Microbiol 46:1118–1124 Bazylinski DA, Frankel RB (2000) Biologically controlled mineralization of magnetic iron minerals by magnetotactic bacteria. In: Lovley DR (ed) Environmental microbe–metal interactions. ASM, Washington, D.C., pp 109–144 Bazylinski DA, Frankel RB (2004) Magnetosome formation in prokaryotes. Nat Rev Microbiol 2:217–230 Bazylinski DA, Frankel RB, Jannasch HW (1988) Anaerobic magnetite production by a marine magnetotactic bacterium. Nature 334:518–519 Bazylinski DA, Garratt-Reed AJ, Abedi A, Frankel RB (1993a) Copper association with iron sulfide magnetosomes in a magnetotactic bacterium. Arch Microbiol 160:35–42 Bazylinski DA, Garratt-Reed AJ, Frankel RB (1993b) Electron microscopic studies of magnetosomes in magnetotactic bacteria. Microsc Res Tech 27:389–401 Bazylinski DA, Frankel RB, Heywood BR, Mann S, King JW, Donaghay PL, Hanson AK (1995) Controlled biomineralization of magnetite (Fe3O4) and greigite (Fe3S4) in a magnetotactic bacterium. Appl Environ Microbiol 61:3232–3239 Bazylinski DA, Dean AJ, Schüler D, Phillips EJP, Lovley DR (2000) N2-dependent growth and nitrogenase activity in the metal-metabolizing bacteria, Geobacter and Magnetospirillum species. Environ Microbiol 2:266–273 Beudeker RF, Cannon GC, Kuenen JG, Shively JM (1980) Relations between d-ribulose-1,5-bisphosphate carboxylase, carboxysomes and CO2 fixing capacity in the obligate chemolithotroph Thiobacillus neapolitanus grown under different limitations in the chemostat. Arch Microbiol 124:185–189 Blakemore RP (1982) Magnetotactic bacteria. Annu Rev Microbiol 36:217–238 Blakemore RP, Maratea D, Wolfe RS (1979) Isolation and pure culture of a freshwater magnetic spirillum in chemically defined medium. J Bacteriol 140:720–729 Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein–dye binding. Anal Biochem 72:248–254 Cox RB, Quayle JR (1975) The autotrophic growth of Micrococcus denitrificans on methanol. Biochem J 150:569–571 Cox BL, Popa R, Bazylinski DA, Lanoil B, Douglas S, Belz A, Engler DL, Nealson KH (2002) Organization and elemental analysis of P-, S-, and Fe-inclusions in a population of freshwater magnetococci. Geomicrobiol J 19:387–406 Dean AJ, Bazylinski DA (1999) Genome analysis of several marine, magnetotactic bacterial strains by pulsed-field gel electrophoresis. Curr Microbiol 39:219–225 DeLong EF, Frankel RB, Bazylinski DA (1993) Multiple evolutionary origins of magnetotaxis in bacteria. Science 259:803–806 Doolittle RF (1981) Similar amino acid sequences: chance or common ancestry? Science 214:149–159 Emerson D, Moyer C (1997) Isolation and characterization of novel iron-oxidizing bacteria that grow at circumneutral pH. Appl Environ Microbiol 63:4784–4792 English RS, Williams CA, Lorbach SC, Shively JM (1992) Two forms of ribulose-1,5-bisphosphate carboxylase/oxygenase from Thiobacillus denitrificans. FEMS Microbiol Lett 94:111–119 Falcone DL, Tabita FR (1993) Complementation analysis and regulation of CO2 fixation gene expression in a ribulose-1,5-bisphosphate carboxylase/oxygenase deletion strain of Rhodospirillum rubrum. J Bacteriol 175:5066–5077 Frankel RB, Blakemore RP, Wolfe RS (1979) Magnetite in freshwater magnetotactic bacteria. Science 203:1355–1356 Frankel RB, Bazylinski DA, Johnson MS, Taylor BL (1997) Magneto-aerotaxis in marine coccoid bacteria. Biophys J 73:994–1000 Gibson JL, Falcone DL, Tabita FR (1991) Nucleotide sequence, transcriptional analysis, and expression of genes encoded within the form I CO2 fixation operon of Rhodobacter sphaeroides. J Biol Chem 266:14646–14653 Guerin WF, Blakemore RP (1992) Redox cycling of iron supports growth and magnetite synthesis by Aquaspirillum magnetotacticum. Appl Environ Microbiol 58:1102–1109 Hayashi NR, Arai H, Kodama T, Igarashi Y (1997) The novel genes, cbbQ and cbbO, located downstream from the RubisCO genes of Pseudomonas hydrogenothermophila, affect the conformational states and activity of RubisCO. Biochem Biophys Res Commun 241:565–569 Hayashi NR, Arai H, Kodama T, Igarashi Y (1998) The nirQ gene, which is required for denitrification of Pseudomonas aeruginosa, can activate the RubisCO from Pseudomonas hydrogenothermophila. Biochim Biophys Acta 1381:347–350 Hayashi NR, Arai H, Kodama T, Igarashi Y (1999) The cbbQ genes, located downstream of the form I and form II RubisCO genes, affect the activity of both RubisCOs. Biochem Biophys Res Commun 265:177–183 Hernandez JM, Baker SH, Lorbach SC, Shively JM, Tabita FR (1996) Deduced amino acid sequence, functional expression, and unique enzymatic properties of the form I and form II ribulose bisphosphate carboxylase/oxygenase from the chemoautotrophic bacterium Thiobacillus denitrificans. J Bacteriol 178:347–356 Iida A, Akai J (1996) Crystalline sulfur inclusions in magnetotactic bacteria. Sci Rep Niigata Univ, Ser E 11:35–42 Jordan DB, Ogren WL (1981) Species variation in the specificity of ribulose bisphosphate carboxylase/oxygenase. Nature 291:513–515 Jukes TH, Holmquist R, Moise H (1975) Amino acid composition of proteins: selection against the genetic code. Science 189:50–51 Kimble LK, Mandelco L, Woese CR, Madigan MT (1995) Heliobacterium modesticaldum, sp. nov., a thermophilic heliobacterium of hot springs and volcanic soils. Arch Microbiol 163:259–267 Kimble LK, Bazylinski DA (1996) Sequence of form I RubisCO gene (cbbL) from Anacystis nidulans, Chromatium vinosum, and Rhodobacter sphaeroides. Abstr Gen Meet Am Soc Microbiol 96:K-174 Mann S, Sparks NHC, Frankel RB, Bazylinski DA, Jannasch HW (1990) Biomineralization of ferrimagnetic greigite (Fe3S4) and iron pyrite (FeS2) in a magnetotactic bacterium. Nature 343:258–260 Marmur J (1961) A procedure for the isolation of deoxyribonucleic acid from microorganisms. J Mol Biol 3:208–218 Moench TT (1988) Bilophococcus magnetotacticus gen. nov. sp. nov., a motile, magnetic coccus. Antonie van Leeuwenhoek 54:483–496 Moench TT, Konetzka WA (1978) A novel method for the isolation and the study of a magnetotactic bacterium. Arch Microbiol 119:203–212 Nargang F, McIntosh L, Somerville CR (1984) Nucleotide sequence of the ribulosebisphosphate carboxylase gene from Rhodospirillum rubrum. Mol Gen Genet 193:220–224 Nelson DC, Jannasch HW (1983) Chemoautotrophic growth of a marine Beggiatoa in sulfide-gradient cultures. Arch Microbiol 136:262–269 Noguchi Y, Fujiwara T, Yoshimatsu K, Fukumori Y (1999) Iron reductase for magnetite synthesis in the magnetotactic bacterium Magnetospirillum magnetotacticum. J Bacteriol 181:2142–2147 Paoli GC, Soyer F, Shively JM, Tabita FR (1998a) Rhodobacter capsulatus genes encoding form I ribulose-1,5-bisphosphate carboxylase/oxygenase (cbbLS) and neighboring genes were acquired by a horizontal gene transfer. Microbiology 144:219–227 Paoli GC, Vichivanives P, Tabita FR (1998b) Physiological control and regulation of the Rhodobacter capsulatus cbb operons. J Bacteriol 180:4258–4269 Pichard SL, Campbell L, Paul JH (1997) Diversity of the ribulose bisphosphate carboxylase/oxygenase form I gene (rbcL) in natural phytoplankton communities. Appl Environ Microbiol 63:3600–3606 Robinson JJ, Stein JL, Cavanaugh CC (1998) Cloning and sequencing of a form II ribulose-1,5-bisphosphate carboxylase/oxygenase from the bacterial symbiont of the hydrothermal vent tubeworm Riftia pachyptila. J Bacteriol 180:1596–1599 Rodgers FG, Blakemore RP, Blakemore NA, Frankel RB, Bazylinski DA, Maratea D, Rodgers C (1990) Intercellular structure in a many-celled magnetotactic prokaryote. Arch Microbiol 154:18–22 Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual, 2nd edn. Cold Spring Harbor Laboratory, Cold Spring Harbor,N.Y. Schleifer K-H, Schüler D, Spring S, Weizenegger M, Amann R, Ludwig W, Kohler M (1991) The genus Magnetospirillum gen. nov., description of Magnetospirillum gryphiswaldense sp. nov. and transfer of Aquaspirillum magnetotacticum to Magnetospirillum magnetotacticum comb. nov. Syst Appl Microbiol 14:379–385 Shinozaki K, Sugiura M (1983) The gene for the small subunit of ribulose-1,5-bisphosphate carboxylase/oxygenase is located close to the large subunit in the cyanobacterium Anacystis nidulans 6301. Nucleic Acids Res 11:6957–6964 Shively JM, Saluja A, McFadden BA (1978) Ribulose-bisphophate carboxylase from methanol-grown Paracoccus denitrificans. J Bacteriol 134:1123–1132 Somerville CR, Somerville SC (1984) Cloning and expression of the Rhodospirillum rubrum ribulose-bisphosphate carboxylase gene in E. coli. Mol Gen Genet 193:214–219 Spring S, Amann R, Ludwig W, Schleifer K-H, Gemerden H van, Petersen N (1993) Dominating role of an unusual magnetotactic bacterium in the microaerobic zone of a freshwater sediment. Appl Environ Microbiol 59:2397–2403 Tabatabai MA (1974) A rapid method for determination of sulfate in water samples. Environ Lett 7:237–243 Tabita (1995) The biochemistry and metabolic regulation of carbon metabolism and CO2 fixation in purple bacteria. In: Blankenship RE, Madigan MT, Bauer C (eds) Anoxygenic photosynthetic bacteria. Kluwer, Dordrecht, pp 885–914 Tayeh MA, Madigan MT (1987) Malate dehydrogenase in phototrophic purple bacteria: purification, molecular weight, and quaternary structure. J Bacteriol 169:4196–4202 Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680 Viale AM, Kobayashi H, Akazawa T (1989) Expressed genes for plant-type ribulose 1,5-bisphosphate carboxylase/oxygenase in the photosynthetic bacterium Chromatium vinosum, which possesses two complete sets of genes. J Bacteriol 171:2391–2400 Wakeham SG, Howes BL, Dacey JWH, Schwarzenbach RP, Zeyer J (1987) Biogeochemistry of dimethylsulfide in a seasonally stratified coastal salt pond. Geochim Cosmochim Acta 51:1675–1684 Xu HH, Tabita FR (1996) Ribulose-1,5-bisphosphate carboxylase/oxygenase gene expression and diversity of Lake Erie planktonic microorganisms. Appl Environ Microbiol 62:1913–1921 Yamazaki T, Oyanagi H, Fujiwara T, Fukumori Y (1995) Nitrite reductase from the magnetotactic bacterium Magnetospirillum magnetotacticum. A novel cytochrome cd1 with Fe(II):nitrite oxidoreductase activity. Eur J Biochem 233:665–671 Yokoyama K, Hayashi NR, Arai H, Chung SY, Igarashi Y, Kodama T (1995) Genes encoding RubisCO in Pseudomonas hydrogenothermophila are followed by a novel cbbQ gene similar to nirQ of the denitrification gene cluster from Pseudomonas species. Gene 153:75–79