Chemogenetic activation of endogenous arginine vasopressin exerts anorexigenic effects via central nesfatin-1/NucB2 pathway
Tóm tắt
Từ khóa
Tài liệu tham khảo
Boyden ES, Zhang F, Bamberg E, Nagel G, Deisseroth K (2005) Millisecond-timescale, genetically targeted optical control of neural activity. Nat Neurosci 8:1263–1268. https://doi.org/10.1038/nn1525
Armbruster BN, Li X, Pausch MH, Herlitze S, Roth BL (2007) Evolving the lock to fit the key to create a family of G protein-coupled receptors potently activated by an inert ligand. Proc Natl Acad Sci USA 104:5163–5168. https://doi.org/10.1073/pnas.0700293104
Yoshimura M, Nishimura K, Nishimura H, Sonoda S, Ueno H, Motojima Y, Saito R, Maruyama T, Nonaka Y, Ueta Y (2017) Activation of endogenous arginine vasopressin neurons inhibit food intake: by using a novel transgenic rat line with DREADDs system. Sci Rep. https://doi.org/10.1038/s41598-017-16049-2
Oh-I S, Shimizu H, Satoh T, Okada S, Adachi S, Inoue K, Eguchi H, Yamamoto M, Imaki T, Hashimoto K, Tsuchiya T, Monden T, Horiguchi K, Yamada M, Mori M (2006) Identification of nesfatin-1 as a satiety molecule in the hypothalamus. Nature 443:709–712. https://doi.org/10.1038/nature05162
Goebel-Stengel M, Wang L, Stengel A, Taché Y (2011) Localization of nesfatin-1 neurons in the mouse brain and functional implication. Brain Res 1396:20–34. https://doi.org/10.1016/j.brainres.2011.04.031
Maejima Y, Sedbazar U, Suyama S, Kohno D, Onaka T, Takano E, Yoshida N, Koike M, Uchiyama Y, Fujiwara K, Yashiro T, Horvath TL, Dietrich MO, Tanaka S, Dezaki K, Hashimoto K, Shimizu H, Nakata M, Mori M, Yada T (2009) Nesfatin-1-regulated oxytocinergic signaling in the paraventricular nucleus causes anorexia through a leptin-independent melanocortin pathway. Cell Metab. https://doi.org/10.1016/j.cmet.2009.09.002
Kohno D, Nakata M, Maejima Y, Shimizu H, Sedbazar U, Yoshida N, Dezaki K, Onaka T, Mori M, Yada T (2008) Nesfatin-1 neurons in paraventricular and supraoptic nuclei of the rat hypothalamus coexpress oxytocin and vasopressin and are activated by refeeding. Endocrinology. https://doi.org/10.1210/en.2007-1276
Morgan JI, Cohen DR, Hempstead JL, Curran T (1987) Mapping patterns of c-fos expression in the central nervous system after seizure. Science 237:192–197. https://doi.org/10.1126/science.3037702
Prakash N, Stark CJ, Keisler MN, Luo L, Der-Avakian A, Dulcis D (2020) Serotonergic plasticity in the dorsal raphe nucleus characterizes susceptibility and resilience to anhedonia. J Neurosci. https://doi.org/10.1523/JNEUROSCI.1802-19.2019
Paxinos G, Watson C (1998) The rat brain in stereotaxic coordinates, 4th edn. Amsterdam, Elsevier
Yoshimura M, Matsuura T, Ohkubo J, Maruyama T, Ishikura T, Hashimoto H, Kakuma T, Mori M, Ueta Y (2014) A role of nesfatin-1/NucB2 in dehydration-induced anorexia. Am J Physiol. https://doi.org/10.1152/ajpregu.00488.2013
Mieda M (2019) The network mechanism of the central circadian pacemaker of the SCN: do AVP neurons play a more critical role than expected? Front Neurosci. https://doi.org/10.3389/fnins.2019.00139
Challet E (2019) The circadian regulation of food intake. Nat Rev Endocrinol 15:393–405. https://doi.org/10.1038/s41574-019-0210-x
Maruyama T, Ohbuchi T, Fujihara H, Shibata M, Mori K, Murphy D, Dayanithi G, Ueta Y (2010) Diurnal changes of arginine vasopressin-enhanced green fluorescent protein fusion transgene expression in the rat suprachiasmatic nucleus. Peptides. https://doi.org/10.1016/j.peptides.2010.08.010
Price CJ, Samson WK, Ferguson AV (2008) Nesfatin-1 inhibits NPY neurons in the arcuate nucleus. Brain Res 1230:99–106. https://doi.org/10.1016/j.brainres.2008.06.084
Carter ME, Soden ME, Zweifel LS, Palmiter RD (2013) Genetic identification of a neural circuit that suppresses appetite. Nature 503:111–114. https://doi.org/10.1038/nature12596
Xu L, Wang Q, Guo F, Pang M, Sun X, Gao S, Gong Y (2015) Nesfatin-1 signaling in the basomedial amygdala modulates the gastric distension-sensitive neurons discharge and decreases gastric motility via melanocortin 3/4 receptors and modified by the arcuate nucleus. Eur J Pharmacol 764:164–172. https://doi.org/10.1016/j.ejphar.2015.07.002
Bonnet MS, Ouelaa W, Tillement V, Trouslard J, Jean A, Gonzalez BJ, Gourcerol G, Dallaporta M, Troadec JD, Mounien L (2013) Gastric distension activates NUCB2/nesfatin-1-expressing neurons in the nucleus of the solitary tract. Regul Pept 187:17–23. https://doi.org/10.1016/j.regpep.2013.10.001
Xu L, Wang H, Gong Y, Pang M, Sun X, Guo F, Gao S (2017) Nesfatin-1 regulates the lateral hypothalamic area melanin-concentrating hormone-responsive gastric distension-sensitive neurons and gastric function via arcuate nucleus innervation. Metabolism 67:14–25. https://doi.org/10.1016/j.metabol.2016.10.010
Psilopanagioti A, Makrygianni M, Nikou S, Logotheti S, Papadaki H (2020) Nucleobindin 2/nesfatin-1 expression and colocalisation with neuropeptide Y and cocaine- and amphetamine-regulated transcript in the human brainstem. J Neuroendocrinol. https://doi.org/10.1111/jne.12899
Koganezawa T, Shimomura Y, Terui N (2008) The role of the RVLM neurons in the viscero-sympathetic reflex: a mini review. Auton Neurosci Basic Clin 142:17–19
Giordano A, Song CK, Bowers RR, Ehlen JC, Frontini A, Cinti S, Bartness TJ (2006) White adipose tissue lacks significant vagal innervation and immunohistochemical evidence of parasympathetic innervation. Am J Physiol 291:1243–1255. https://doi.org/10.1152/ajpregu.00679.2005
Bray GA (2000) Reciprocal relation of food intake and sympathetic activity: experimental observations and clinical implications. Int J Obes 24:S8–S17. https://doi.org/10.1038/sj.ijo.0801269
Travagli RA, Anselmi L (2016) Vagal neurocircuitry and its influence on gastric motility. Nat Rev Gastroenterol Hepatol 13:389–401
Tso P, Liu M (2006) Gastrointestinal regulation of food intake. Princ Mol Med 117:513–517. https://doi.org/10.1007/978-1-59259-963-9_47
NamKoong C, Song WJ, Kim CY, Chun DH, Shin S, Sohn JW, Choi HJ (2019) Chemogenetic manipulation of parasympathetic neurons (DMV) regulates feeding behavior and energy metabolism. Neurosci Lett 712:134356. https://doi.org/10.1016/j.neulet.2019.134356
Yosten GLC, Redlinger L, Samson WK (2012) Evidence for a role of endogenous nesfatin-1 in the control of water drinking. J Neuroendocrinol 24:1078–1084. https://doi.org/10.1111/j.1365-2826.2012.02304.x