Chemistry of impact events on Mercury
Tài liệu tham khảo
Akhmadov, 1988, Mechanism and kinetics of interaction of Fe, Cr, Mo, and Mn atoms with molecular oxygen, Kinet. Catal., 29, 291
Baulch, 1992, Evaluated kinetic data for combustion modelling, J. Phys. Chem. Ref. Data, 21, 411, 10.1063/1.555908
Belyung, 1995, The A1O + O2 reaction system over a wide temperature range, J. Phys. Chem., 99, 12225, 10.1021/j100032a027
Berezhnoy, 2008, Impacts as a source of the atmosphere on Mercury, Icarus, 195, 511, 10.1016/j.icarus.2008.01.005
Berezhnoy, 2013, Chemistry of impact events on the Moon, Icarus, 226, 205, 10.1016/j.icarus.2013.05.030
Bida, 2017, Observations of the minor species Al and Fe in Mercury's exosphere, Icarus, 289, 227, 10.1016/j.icarus.2016.10.019
Borin, 2016, Asymmetries in the dust flux at Mercury, Icarus, 264, 220, 10.1016/j.icarus.2015.09.032
Broadfoot, 1976, Mariner 10 - Mercury atmosphere, Geophys. Res. Lett., 3, 577, 10.1029/GL003i010p00577
Burger, 2012, Modeling MESSENGER observations of calcium in Mercury's exosphere, J. Geophys. Res., 117, E00L11, 10.1029/2012JE004158
Burger, 2014, Seasonal variations in Mercury's dayside calcium exosphere, Icarus, 238, 51, 10.1016/j.icarus.2014.04.049
Cassidy, 2015, Mercury's seasonal sodium exosphere: MESSENGER orbital observations, Icarus, 248, 547, 10.1016/j.icarus.2014.10.037
Chassefière, 2010, PHEBUS: a double ultraviolet spectrometer to observe Mercury's exosphere, Planet. Space Sci., 58, 201, 10.1016/j.pss.2008.05.018
Christou, 2015, The meteoroid stream of comet Encke at Mercury: implications for Mercury surface, space environment, Geochemistry, and ranging observations of the exosphere, Geophys. Res. Lett., 42, 7311, 10.1002/2015GL065361
Cintala, 1992, Impact-induced thermal effects in the lunar and Mercurian regoliths, J. Geophys. Res., 97, 947, 10.1029/91JE02207
Cohen, 1983, Chemical kinetic data sheets for high-temperature chemical reactions, J. Phys. Chem. Ref. Data, 12, 531, 10.1063/1.555692
Colaprete, 2016, How surface composition and meteoroid impacts mediate sodium and potassium in the lunar exosphere, Science, 351, 249, 10.1126/science.aad2380
Colin, 1964, Mass-spectrometric studies of the vaporization of the sulphides of calcium, strontium and barium. The dissociation energy of S2 and SO, Trans. Faraday Soc., 60, 306, 10.1039/tf9646000306
Cremonese, 2005, Release of neutral sodium atoms from the surface of Mercury induced by meteoroid impacts, Icarus, 177, 122, 10.1016/j.icarus.2005.03.022
Drowart, 1972, Determination by the mass spectrometric Knudsen cell method of the atomization energies of the molecules PO and PO2, J. Chem. Soc. Faraday Trans., 68, 1749, 10.1039/f29726801749
Evans, 2012, Major-element abundances on the surface of Mercury: Results from the MESSENGER gamma-ray spectrometer, J. Geophys. Res, 117, E00L07, 10.1029/2012JE004178
Evans, 2015, Chlorine on the surface of Mercury: MESSENGER gamma-ray measurements and implications for the planet's formation and evolution, Icarus, 257, 417, 10.1016/j.icarus.2015.04.039
Garland, 1992, Pressure and temperature dependence of the kinetics of the reaction Al + CO2, J. Phys. Chem., 96, 8390, 10.1021/j100200a034
Grimley, 1961, Thermodynamics of the vaporization of Cr2O3: dissociation energies of CrO, CrO2, and CrO3, J. Chem. Phys., 34, 664, 10.1063/1.1701005
Gurvich, 1989, vol. 5
Hampson, 1971, High‐temperature vaporization and thermodynamics of the titanium oxides. VII. Mass spectrometry and dissociation energies of TiO(g) and TiO2(g), J. Chem. Phys., 55, 3712, 10.1063/1.1676654
Herzog, 2009, Isotopic and elemental abundances of copper and zinc in lunar samples, Zagami, Pelé’s hairs, and a terrestrial basalt, Geochim. Cosmochim. Acta, 73, 5884, 10.1016/j.gca.2009.05.067
Hildenbrand, 1970, Dissociation energies and chemical bonding in the alkaline‐earth chlorides from mass spectrometric studies, J. Chem. Phys., 52, 5751, 10.1063/1.1672855
Hildenbrand, 1973, Dissociation energies of the molecules AlO and Al2O, Chem. Phys. Lett., 20, 127, 10.1016/0009-2614(73)85236-4
Huebner, 1992, Solar photo rates for planetary atmospheres and atmospheric pollutants, Astrophys. Space Sci. 195, 1–289, 291
Huebner, 2015, Photoionization and photodissociation rates in solar and blackbody radiation fields, Planet. Space Sci., 106, 11, 10.1016/j.pss.2014.11.022
Jenniskens, 2006
Jessberger, 1988, Aspects of the main element composition of Halley's dust, Nature, 332, 691, 10.1038/332691a0
Jopek, 2013, Stream and sporadic meteoroids associated with near-Earth objects, Mon. Not. R. Astron. Soc., 430, 2377, 10.1093/mnras/stt057
Killen, 1997, Mercury's polar caps and the generation of an OH exosphere, Icarus, 125, 195, 10.1006/icar.1996.5601
Killen, 2005, The calcium exosphere of Mercury, Icarus, 173, 300, 10.1016/j.icarus.2004.08.022
Killen, 2015, Impact vaporization as a possible source of Mercury's calcium exosphere, Icarus, 250, 230, 10.1016/j.icarus.2014.11.035
Killen, 2016, Pathways for energization of Ca in Mercury's exosphere, Icarus, 268, 32, 10.1016/j.icarus.2015.12.035
Klumov, 2005, Deep Impact experiment: possible observable effects, Phys.Uspekhi, 48, 733, 10.1070/PU2005v048n07ABEH004489
Lawrence, 2013, Evidence for water ice near Mercury's north pole from MESSENGER neutron spectrometer measurements, Science, 339, 292, 10.1126/science.1229953
Leblanc, 2011, Mercury exosphere II. The sodium/potassium ratio, Icarus, 211, 10, 10.1016/j.icarus.2010.09.004
Li, 1996, Calculation of bond dissociation energies of diatomic molecules using bond function basis sets with counterpoise corrections, Int. J. Quant. Chem., 57, 207, 10.1002/(SICI)1097-461X(1996)57:2<207::AID-QUA6>3.0.CO;2-1
Lodders, 2003, Solar System abundances and condensation temperatures of the elements, Astrophys. J., 591, 1220, 10.1086/375492
McClintock, 2009, MESSENGER observations of Mercury's exosphere: detection of magnesium and distribution of constituents, Science, 324, 610, 10.1126/science.1172525
Merkel, 2017, Seasonal variations of Mercury's magnesium dayside exosphere from MESSENGER observations, Icarus, 281, 46, 10.1016/j.icarus.2016.08.032
Micheli, 2015, Search for meter-sized bodies in meteoroid streams, Icarus, 253, 142, 10.1016/j.icarus.2015.02.019
Morgan, 1997, A non-stoichiometric model of the composition of the atmospheres of Mercury and the Moon, Planet. Space Sci., 45, 81, 10.1016/S0032-0633(96)00099-2
Müller, 2002, Estimation of the dust flux near Mercury, Planet. Space Sci., 50, 1101, 10.1016/S0032-0633(02)00048-X
Nagarajan, 1997, Transition probabilities and dissociation energies of MnH and MnD molecules, Acta Physica Slovaca, 47, 485
Neumann, 2013, Bright and dark polar deposits on Mercury: evidence for surface volatiles, Science, 339, 296, 10.1126/science.1229764
NIST, 2017. <http://kinetics.nist.gov/kinetics/>.
Nittler, 2011, The major-element composition of Mercury's surface from MESSENGER X-ray spectrometry, Science, 333, 1847, 10.1126/science.1211567
O'Keefe, 1984, Condensation of impact produced vapor, 617
Partridge, 1988, Theoretical study of the alkali and alkaline–earth monosulfides, J. Chem. Phys., 88, 6431, 10.1063/1.454429
Pecinová, 2007, Radar meteors range distribution model. II. Shower flux density and mass distribution index, Contrib. Astron. Obs. Skaln. Pleso, 37, 107
Peplowski, 2012, Variations in the abundances of potassium and thorium on the surface of Mercury: results from the MESSENGER gamma-ray spectrometer, J. Geophys. Res, 117, E00L04, 10.1029/2012JE004141
Peplowski, 2014, Enhanced sodium abundance in Mercury's north polar region revealed by the MESSENGER gamma-ray Spectrometer, Icarus, 228, 86, 10.1016/j.icarus.2013.09.007
Pfleger, 2015, 3D-modeling of Mercury's so- lar wind sputtering surface-exosphere environment, Planet. Space Sci., 115, 90, 10.1016/j.pss.2015.04.016
Plainaki, 2017, Investigation of the possible effects of comet Encke's meteoroid stream on the Ca exosphere of Mercury, J. Geophys. Res, 22
Pokorný, 2017, Reconciling the dawn–dusk asymmetry in Mercury's exosphere with the micrometeoroid impact directionality, Astrophys. J. Lett., 842, 10.3847/2041-8213/aa775d
Potter, 1995, Chemical sputtering could produce sodium vapor and ice on Mercury, Geophys. Res. Lett., 22, 3289, 10.1029/95GL03181
Potter, 1990, Evidence for magnetospheric effects on the sodium atmosphere of Mercury, Science, 248, 835, 10.1126/science.248.4957.835
Potter, 2002, Ratio of sodium to potassium in the Mercury exosphere, J. Geophys. Res., 107, 10.1029/2000JE001493
Potter, 2007, Solar radiation acceleration effects on Mercury sodium emission, Icarus, 186, 571, 10.1016/j.icarus.2006.09.025
Raizer, 1960, Condensation of a cloud of vaporized matter expanding in vacuum, J. Exp. Theor. Phys., 37, 1229
Sarantos, 2011, Limits to Mercury's magnesium exosphere from MESSENGER second flyby observations, Planet. Space Sci., 59, 1992, 10.1016/j.pss.2011.05.002
Self, 2002, Absolute photolysis cross-sections for NaHCO3, NaOH, NaO, NaO2 and NaO3: Implications for sodium chemistry in the upper mesosphere, Phys. Chem. Chem. Phys., 4, 16, 10.1039/B107078A
Smirnov, 1998, Dissociation of FeO2 in shock waves: analysis of the forward and backward reactions, Kinet. Catal, 39, 844
Smirnov, 2011, Determination of the rate constants for the reaction Fe + O2 = FeO + O in the forward and reverse directions, Kinet. Catal., 52, 166, 10.1134/S0023158411020194
Smirnov, 2012, Thermochemical parameters and rate constants of the reactions Fe + O2 + M ->FeO2 + M and FeO + O2 ->FeO2 + O, Kinet. Catal, 53, 543, 10.1134/S0023158412050138
Smoes, 1984, Determination of the dissociation energies of gaseous iron monoxide and manganese monoxide by the mass spectrometric Knudsen cell method, High Temp. Sci., 17, 31, 10.1007/978-1-4612-5180-4_2
Sprague, 1995, Sulfur at Mercury, elemental at the poles and sulfides in the regolith, Icarus, 118, 211, 10.1006/icar.1995.1186
Turanyi, 2012, Determination of rate parameters based on both direct and indirect measurements, Int. J. Chem. Kinet., 44, 284, 10.1002/kin.20717
Valiev, 2016, Ab initio study of electronic states of astrophysically important molecules, Russ. Phys. J., 59, 536, 10.1007/s11182-016-0803-y
Vervack, 2016, New discoveries from MESSENGER and insights into Mercury's exosphere, Geophys. Res. Lett, 43, 10.1002/2016GL071284
Wurz, 2010, Self-consistent modelling of Mercury's exosphere by sputtering, micrometeorite impact and photon-stimulated desorption, Planet. Space Sci., 58, 1599, 10.1016/j.pss.2010.08.003
Yakshinskiy, 1999, Photon-stimulated desorption as a substantial source of sodium in the lunar atmosphere, Nature, 400, 642, 10.1038/23204
Zel'dovich, 1966, vol. 1