Chemisches Recycling von gemischten Kunststoffabfällen als ergänzender Recyclingpfad zur Erhöhung der Recyclingquote
Tóm tắt
Từ khóa
Tài liệu tham khảo
4R Sustainability Inc. (2011) Conversion technology: A complement to plastic recycling. https://plastics.americanchemistry.com/Plastics-to-Oil/ . Accessed 9 September 2019
Agilyx. https://www.agilyx.com/ . Accessed 24 September 2019
Bilitewski B, Härdtle G, Marek K (2000) Abfallwirtschaft: Handbuch für Praxis und Lehre, Dritte, neubearbeitete Auflage. Springer Berlin Heidelberg, Berlin, Heidelberg, s. l.
BluAlp (2019) BluAlp. https://www.bluealp.nl/ . Accessed 11.09.19
Braun D, Disselhoff R, Guckel C, Illing G (2001) Rohstoffliches Recycling von glasfaserverstärktem Polyamid‑6. Chem.-Ing.-Tech. 73:183–190. https://doi.org/10.1002/1522-2640(200103)73:3<183::AID-CITE183>3.0.CO;2‑J
Bundesgesetz über eine nachhaltige Abfallwirtschaft (Abfallwirtschaftsgesetz 2002 – AWG 2002): AWG 2002
Cassandra Oil. http://www.cassandraoil.com/en/ . Accessed 24 September 2019
Chaabani C, Weiss-Hortala E, Soudais Y (2017) Impact of Solvolysis Process on Both Depolymerization Kinetics of Nylon 6 and Recycling Carbon Fibers from Waste Composite. Waste Biomass Valor 8:2853–2865. https://doi.org/10.1007/s12649-017-9901-5
Clariter—global clean-tech group. http://www.clariter.com/ . Accessed 24 September 2019
Clarke JH, Aguado J, Serrano DA (1999) Feedstock recycling of plastic wastes. RSC Clean Technology monographs. Cambridge, LaVergne: The Royal Society of Chemistry, Ingram Publisher Services
Coca Cola Company (2019) Chemical Recycling: Could This Breakthrough Technology Curb Plastic Waste? https://www.coca-colacompany.com/stories/chemical-recycling-could-this-breakthrough-technology-curb-plastic-waste . Accessed 15 August 2019
COMM/RTD (2019a) Recycling von Teppichmaterial | Result in Brief | FP4 | CORDIS | European Commission. https://cordis.europa.eu/project/rcn/30976/brief/de . Accessed 15 August 2019
CORDIS (2019b) PolyUrethane Recycling towards a Smart Circular Economy | PUReSmart Project | H2020 | CORDIS | European Commission. https://cordis.europa.eu/project/rcn/220032/factsheet/en . Accessed 14 August 2019
Demont De Fuel: from plastic to opportunity—DEMONT srl. http://www.demont.it/de-fuel/?lang=en . Accessed 24 September 2019
DuPont Teijin Films (2019) DuPont Teijin Films makes a significant step forward in chemical recycling with the LuxCR™ depolymerisation process. http://europe.dupontteijinfilms.com/news/2019/dupont-teijin-films-makes-a-significant-step-forward-in-chemical-recycling-with-the-luxcr-depolymerisation-process/ . Accessed 13 August 2019
Eastman (2019) Eastman offers innovative recycling technology for polyesters. https://www.eastman.com/Company/News_Center/2019/Pages/Eastman-offers-innovative-recycling-technology-for-polyesters.aspx . Accessed 13 August 2019
ecoloop GmbH. https://www.ecoloop.eu/ . Accessed 9 August 2019
Enerkem: From waste to Cellulosic ethanol, Biomethanol | Disruptive technology. https://enerkem.com/ . Accessed 9 August 2019
Fulcrum BioEnergy. http://fulcrum-bioenergy.com/ . Accessed 24 September 2019
George N, Kurian T (2014) Recent Developments in the Chemical Recycling of Postconsumer Poly(ethylene terephthalate) Waste. Ind. Eng. Chem. Res. 53:14185–14198. https://doi.org/10.1021/ie501995m
gr3n recycling: | Long life to plastic bottles! http://gr3n-recycling.com/#tab-id-10 . Accessed 15 August 2019
GreenMantra Technologies (2019). Webpräsenz. http://greenmantra.com/ . Accessed 24 September 2019
Handerek Technologies. http://handerek-technologies.com/en/ . Accessed 24 September 2019
Klean Industries: Pyrolysis Plant Manufacturer & Gasification Equipment Supplier | Turning Tires, Plastics & Municipal Solid Wastes into Energy. http://www.kleanindustries.com/s/Home.asp . Accessed 24 September 2019
Licella (2019a) Cat-HTR™. https://www.licella.com.au/cat-htr/ . Accessed 24 September 2019
Licella (2019b) Webpräsenz. https://www.licella.com.au/ . Accessed 11 September 2019
Lopez G, Artetxe M, Amutio M, Alvarez J, Bilbao J, Olazar M (2018) Recent advances in the gasification of waste plastics. A critical overview. Renewable and Sustainable Energy Reviews 82:576–596. https://doi.org/10.1016/j.rser.2017.09.032
Martens H, Goldmann D (2016) Recyclingtechnik: Fachbuch für Lehre und Praxis, 2. Auflage. Springer Vieweg, Wiesbaden
Michaeli W, Bittner M, Wolters L (1993) Stoffliches Kunststoff-Recycling: Anlagen, Komponenten, Hersteller. Hanser, München
Munir D, Irfan MF, Usman MR (2018) Hydrocracking of virgin and waste plastics: A detailed review. Renewable and Sustainable Energy Reviews 90:490–515. https://doi.org/10.1016/j.rser.2018.03.034
Murata K, Sato K, Sakata Y (2004) Effect of pressure on thermal degradation of polyethylene. Journal of Analytical and Applied Pyrolysis 71:569–589. https://doi.org/10.1016/j.jaap.2003.08.010
Neste (2018) Neste aiming to use waste plastic as a raw material for fuels and plastics. https://www.neste.com/releases-and-news/circular-economy/neste-aiming-use-waste-plastic-raw-material-fuels-and-plastics . Accessed 11 September 2019
OCEAN RECOVERY ALLIANCE (2015) 2015 Plastics-to-Fuel Project Developer’s Guide. https://www.oceanrecov.org/assets/files/Valuing_Plastic/2015-PTF-Project-Developers-Guide.pdf . Accessed 9 September 2019
OMV (2018) ReOil: Aus Kunststoff wieder Öl gewinnen. https://www.omv.com/de/blog/reoil-aus-kunststoff-wieder-oel-gewinnen . Accessed 30 September 2019
Pardal F, Tersac G (2006) Comparative reactivity of glycols in PET glycolysis. Polymer Degradation and Stability 91:2567–2578. https://doi.org/10.1016/j.polymdegradstab.2006.05.016
Petrogas (2019) Plastic to Chemicals | Petrogas. https://www.petrogas.nl/process-systems/plastic-to-oil/ . Accessed 18 September 2019
Plastic Advanced Recycling Corp. P.A.R.C. Technology. http://www.plastic2x.com/parctechnology/ . Accessed 9 September 2019
PlasticsEurope AISBL (2018) Plastics – the Facts 2018. https://www.plasticseurope.org/application/files/6315/4510/9658/Plastics_the_facts_2018_AF_web.pdf . Accessed 24 September 2019
Plastic Energy. https://plasticenergy.com/ . Accessed 11 September 2019
QuantaFuel:—Produces environmentally friendly, clean and cheap synthetic diesel (not biodiesel) from wasted resources. https://quantafuel.com/ . Accessed 24 September 2019
Ragaert K, Delva L, van Geem K (2017) Mechanical and chemical recycling of solid plastic waste. Waste Manag 69:24–58. https://doi.org/10.1016/j.wasman.2017.07.044
The RT7000 | Recycling Technologies. https://recyclingtechnologies.co.uk/technology/the-rt7000/ . Accessed 24 September 2019
ReNew ELP. https://renewelp.co.uk/our-process/ . Accessed 11 September 2019
Richtlinie (EU) 2018/852 des Europäischen Parlaments und des Rates vom 30. Mai 2018 zur Änderung der Richtlinie 94/62/EG über Verpackungen und Verpackungsabfälle: 2015/0275 (COD)
Samperio JAS (2016) Alternative catalytic processes for the valorization of plastic wastes to fuels, Universidad del Pais Vaso
Scheirs J, Kaminsky W (2006) Feedstock recycling and pyrolysis of waste plastics: Converting waste plastics into diesel and other fuels. Wiley series in polymer science. J. Wiley & Sons, Chichester, UK, Hoboken, NJ
Schubert T, Lehner M, Karner T, Hofer W, Lechleitner A (2019) Influence of reaction pressure on co-pyrolysis of LDPE and a heavy petroleum fraction. Fuel Processing Technology 193:204–211. https://doi.org/10.1016/j.fuproc.2019.05.016
Sheel A, Pant D (2019) Chemical Depolymerization of PET Bottles via Glycolysis. In: Recycling of Polyethylene Terephthalate Bottles. Thomas S, Rane A, Kanny K, Abitha VK, Thomas MG (Eds.) Elsevier, pp 61–84
Shell (2019a) IH² Technology. https://www.shell.com/business-customers/catalysts-technologies/licensed-technologies/benefits-of-biofuels/ih2-technology.html . Accessed 11 September 2019
Tukker A (2002) Plastics waste: Feedstock recycling, chemical recycling and incineration. Rapra review reports, vol 148. Rapra Technology, Shrewsbury
Vadxx (2019) Vadxx—Plastic to EcoFuel. https://vadxx.com/ . Accessed 24 September 2019
Wilk V, Hofbauer H (2013) Conversion of mixed plastic wastes in a dual fluidized bed steam gasifier. Fuel 107:787–799. https://doi.org/10.1016/j.fuel.2013.01.068