Chemically Programmable and Switchable CAR‐T Therapy

Angewandte Chemie - International Edition - Tập 59 Số 29 - Trang 12178-12185 - 2020
Junpeng Qi1, Kohei Tsuji2,3, David Hymel2, Terrence R. Burke2, Michael Hudecek4, Christoph Rader1, Haiyong Peng1
1Department of Immunology and Microbiology, The Scripps Research Institute, 130 Scripps Way, Jupiter, FL, 33458, USA
2Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Building 376 Boyles Street, Frederick, MD, 21702 USA
3Department of Medicinal Chemistry, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, 2-3-10 Kandasurugadai, Chiyoda-ku, Tokyo, 101-0062 Japan
4Medizinische Klinik und Poliklinik II Universitätsklinikum Würzburg Oberdürrbacherstrasse 6 97080 Würzburg Germany

Tóm tắt

AbstractAlthough macromolecules on cell surfaces are predominantly targeted and drugged with antibodies, they harbor pockets that are only accessible to small molecules and constitutes a rich subset of binding sites with immense potential diagnostic and therapeutic utility. Compared to antibodies, however, small molecules are disadvantaged by a less confined biodistribution, shorter circulatory half‐life, and inability to communicate with the immune system. Presented herein is a method that endows small molecules with the ability to recruit and activate chimeric antigen receptor T cells (CAR‐Ts). It is based on a CAR‐T platform that uses a chemically programmed antibody fragment (cp‐Fab) as on/off switch. In proof‐of‐concept studies, this cp‐Fab/CAR‐T system targeting folate binding proteins on the cell surface mediated potent and specific eradication of folate‐receptor‐expressing cancer cells in vitro and in vivo.

Từ khóa


Tài liệu tham khảo

 

10.1126/science.aar6711

10.1038/nature22395

10.1158/1078-0432.CCR-18-2035

10.1182/blood-2018-04-839217

10.1158/1078-0432.CCR-18-2743

10.1073/pnas.86.24.10024

10.1089/hum.2017.254

10.1158/2159-8290.CD-18-0297

10.1016/j.ccell.2017.02.008

 

10.1016/j.tibtech.2014.02.003

10.1038/518038a

 

10.1021/jacs.5b00106

10.1158/0008-5472.CAN-18-1834

10.1073/pnas.1524155113

 

10.1021/jm100509v

10.1039/C7SC04004K

 

10.1074/jbc.M112.384594

10.1074/jbc.M116.745588

10.3389/fimmu.2019.01994

10.1038/s41467-019-10565-7

10.1158/0008-5472.CAN-11-0422

 

10.1073/pnas.1524193113

10.1002/anie.201601902

10.1002/ange.201601902

10.1016/S0022-2836(03)00992-6

10.1021/acs.bioconjchem.9b00609

10.1073/pnas.0931308100

10.1074/jbc.M309169200

10.1158/2326-6066.CIR-14-0127

10.1182/blood-2011-02-337360

10.1016/j.bmcl.2009.01.028

10.1073/pnas.95.26.15351

 

10.1073/pnas.1808790115

10.1371/journal.pone.0121314

10.1016/j.cell.2016.12.029

 

10.1038/nrd.2018.53

10.1038/nrd.2016.213

 

10.1038/d41573-019-00159-9

10.1016/j.drudis.2019.06.020

10.1126/science.278.5346.2085

10.18632/oncotarget.8282

10.1080/19420862.2019.1596511

10.1073/pnas.1810060115

10.1124/jpet.108.143206