Chemical validation of molecular mimicry: interaction of cholera toxin with Campylobacter lipooligosaccharides
Tóm tắt
It is generally believed that molecular mimicry between bacterial lipooligosaccharide (LOS) and nerve glycolipids may play an important pathogenic role in immune-mediated peripheral neuropathy. One of the putative infectious agents is Campylobacter jejuni (C. jejuni). To elucidate the structural basis for the molecular mimicry, we investigated the structure of the lipooligosaccharide (LOS) fraction of C. jejuni, strain HS19, and found that it includes at least two components, characterized as fast-and slow-moving bands (LF and LS) by thin-layer chromatography as revealed by cholera toxin B subunit (Ctxb) overlay. Structural analysis of the oligosaccharide portion of LS established that it had the following structure: Gal-GalNAc-(NeuAc)Gal-Hep-(Glc;PO3H)Hep-Kdo. The GM1-like epitope was validated by a terminal tetrasaccharide unit within this structure. On the other hand, analysis of LF revealed an entirely different structure: 1, 4′-bisphosphoryl glucosamine disaccharide N, N’-acylated by 3-(2-hydroxytetracosanoyloxy)octadecanoic acid at 2- and 2′-positions, which is consistent with that of lipid A. No GM1-like epitope was observed in LF. Both LS and LF interacted with Ctxb as demonstrated by TLC-overlay and sucrose density gradient centrifugation. Surprisingly, LF does not have the basic GM1 structure for interacting with Ctxb. Instead, the affinity of LF to Ctxb required that one or both of the phosphate groups be present in the glucosamine disaccharide residue because after alkaline phosphatase treatment the dephosphorylated LF was unable to bind to Ctxb. We conclude that LS is likely the component contributing to GM1-mimicry in autoimmune peripheral neuropathy and that the role of LF is not clear but may be associated with the initial activation of autoreactive T cells.
Tài liệu tham khảo
Kornberg, A.: Anti-GM1 ganglioside antibodies: their role in the diagnosis and pathogenesis of immune-mediated motor neuropathies. J. Clin. Neurosci. 7, 191–194 (2000)
Arasaki, K., Kusunoki, S., Kudo, N., Tamaki, M.: The pattern of antiganglioside antibody reactivities producing myelinated nerve conduction block in vitro. J. Neurol. Sci. 161, 163–168 (1998)
Hiraga, A., Kuwabara, S., Ogawara, K., Misawa, S., Kanesaka, T., Koga, M., Yuki, N., Hattori, T., Mori, M.: Patterns and serial changes in electrodiagnostic abnormalities of axonal Guillain-Barré syndrome. Neurology 64, 856–860 (2005)
Ang, C.W., Jacobs, B.C., Laman, J.D.: The Guillain-Barré syndrome: a true case of molecular mimicry. Trends. Immunol. 25, 61–66 (2004)
Willison, H.J.: The immunobiology of Guillain-Barré syndrome. J. Peripher Nerve. Syst. 10, 94–112 (2005)
Ariga, T., Yu, R.K.: Antiglycolipid antibodies in Guillain-Barré syndrome and related diseases: review of clinical features and antibody specificities. J. Neurosci. Res. 80, 1–17 (2005)
Raetz, C.R., Whitfield, C.: Lipopolysaccharide endotoxins. Ann. Rev. Biochem. 71, 635–700 (2002)
Aleander, C., Rietschel, E.T.: Bacterial lipopolysaccharides and innate immunity. J. Endotoxin. Res. 7, 167–202 (2001)
Allos, B.M., Lippy, F.T., Carlsen, A., Washburn, R.G., Blaser, M.J.: Campylobacter jejuni strains from patients with Guillain-Barré syndrome. Emerg. Infect. Dis. 4, 263–268 (1998)
Nishimura, M., Nukina, M., Kuroki, S., Obayashi, H., Ohta, M., Ma, J.J., Saida, T., Uchiyama, T.: Characterization of Campylobacter jejuni isolates from patients with Guillain-Barré syndrome. J. Neurol. Sci. 153, 91–99 (1997)
Kuziemko, G.M., Stroh, M., Stevens, R.C.: Cholera toxin binding affinity and specificity for gangliosides determined by surface plasma resonance. Biochemistry 35, 6375–6384 (1996)
Morinaga, N., Iwamaru, Y., Yahiro, K., Tagashira, M., Moss, J., Noda, M.: Differential activities of plant polyphenols on the binding and internalization of cholera toxin in vero cells. J. Biol. Chem. 280, 23303–23309 (2005)
Westphal, O., Luderitz, O., Bister, F.: Uber die Extraktion von Bakterien mit Phenol/Waser. Z. Naturforsch. 7b, 148 (1952)
Usuki, S., Sanchez, J., Ariga, T., Utsunomiya, I., Taguchi, K., Rivner, M.H., Yu, R.K.: AIDP and CIDP having specific antibodies to the carbohydrate epitope (−NeuAcα2-8NeuAcα2-3Galβ1-4Glc-) of gangliosides. J. Neurol. Sci. 232, 37–44 (2005)
Cameron-Smith, R., Harbour, C.: Removal of poliovirus type 1 from a protein mixture using an immunoaffinity chromatography column. Biomed. Chromatogr. 15, 471–483 (2001)
Yoshimi, Y., Yamazaki, S., Ikekita, M.: Developmental changes in Asn-linked neutral oligosaccharides in murine cerebrum. Biochim. Biophys. Acta 1426, 69–79 (1999)
Ito, M., Ikeda, K., Suzuki, Y., Tanaka, K., Saito, M.: An improved fluorescence high-performance liquid chromatography method for sialic acid determination: an internal standard method and its application to sialic acid analysis of human apolipoprotein E. Anal. Biochem. 300, 260–266 (2002)
Fujii, T., Shimoi, H., Iimura, Y.: Structure of the glucan-binding sugar chain of Tip1p, a cell wall protein of Saccharomyces cerevisiae. Biochim. Biophys. Acta 1427, 133–144 (1999)
Monsigny, M., Petit, C., Roche, A.C.: Colorimetric determination of neutral sugars by a resorcinol sulfuric micromethod. Anal. Biochem. 175, 525–530 (1988)
Yasuno, S., Kokubo, K., Kamei, M.: New method of determining the sugar composition of glycoproteins, glycolipids, and oligosaccharide by high-performance liquid chromatography. Biosci. Biotechnol. Biochem. 63, 1353–1359 (1999)
Murata, T., Shibatsuji, H., Yoshimi, Y., Hara, H., Yasuno, S., Yamaguchi, T., Moriya, H., Sweeley, C.C., Ikekita, M.: Structural characterization of sialylated and neutral N-linked oligosaccharides labeled with p-aminobenzoic acid octylester by high performance liquid chromatography and fast atom bombardment mass spectrometry. Res. Commun. Biochem. Cell. Mol. Biol. 1, 285–303 (1997)
Drewry, D.T., Lomax, J.A., Gray, G.W., Wilkinson, S.G.: Studies of lipid A fractions from the lipopolysaccharides of Pseudomonas aeruginosa and Pseudomonas alcaligenes. Biochem. J. 133, 563–572 (1973)
Aronson, N.N. Jr, Touster, O.: Isolation of rat liver plasma membrane fragments in isotonic sucrose. Methods Enzymol. 31, 90–102 (1974)
Bartlett, G.R.: Colorimetric assay methods for free and phosphorylated glyceric acids. J. Biol. Chem. 234, 467–471 (1959)
Reissig, J.L., Storminger, J.L., Leloir, L.F.: A modified colorimetric method for the estimation of N-acetylamino sugars. J. Biol. Chem. 217, 959–966 (1955)
Dumcombe, W.G., Rising, T.J.: Quantitative extraction and determination of nonesterified fatty acids in plasma. J. Lipid. Res. 14, 258–261 (1973)
Laemmli, U.K.: Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227, 680–685 (1970)
Ando, E., Terayama, H., Nishizawa, K., Yamakawa, T.: Seikagaku Kenkyuho I (Asakurashyoten, Tokyo, 1967), chapter 2, p.79
Wucherpfennig, K.W.: Structural basis of molecular mimicry. J. Autoimmun. 16, 293–302 (2001)
Wucherpfennig, K.W.: Infectious triggers for inflammatory neurological diseases. Nat. Med. 8, 455–457 (2002)
Cohen, I.R.: Principles of molecular mimicry and autoimmune diseases. In: Cummingham, M.W. (eds.) Molecular Mimicry, Microbes, and Autoimmunity, pp. 17–26. Fujinami RS ASM, Washington DC (2000)
Baum, H., Davies, H., Peakman, M.: Molecular mimicry in the MHC: hidden clues to autoimmunity. Immunol. Today 17, 64–70 (1996)
Van Rhijn, I., Van den Berg, L.H., Ang, C.W., Admiraal, J., Logtenberg, T.: Expansion of human gammadelta T cells after in vitro stimulation with Campylobacter jejuni. Int. Immunol. 15, 373–382 (2003)
Zhu, J., Pelidou, S.H., Deretzi, G., Levi, M., Mix, E., van der Meide, P., Winblad, B., Zou, L.P.: P0 glycoprotein peptides 56–71 and 180–199 dose-dependently induce acute and chronic experimental autoimmune neuritis Lewis rats associated with epitope spreading. J. Neuroimmunol. 114, 99–106 (2001)
Usuki, S., Thompson, S.A., Rivner, M.H., Taguchi, K., Shibata, K., Ariga, T., Yu, R.K.: Molecular mimicry: sensitization of Lewis rats with Campylobacter jejuni lipopolysaccharides induces formation of antibody toward GD3 ganglioside. J. Neurosci. Res. 83, 274–284 (2006)
Aspinall, G.O., McDonald, A.G., Raju, T.S., Pang, H., Mills, S.D., Kurjanczyk, L.A., Penner, J.L.: Serological diversity and chemical structures of Campylobacter jejuni low-molecular-weight lipopolysaccharides. J. Bacteriol. 174, 1324–1332 (1992)
Aspinall, G.O., McDonald, A.G., Pang, H., Kurjanczyk, L.A., Penner, J.L.: Lipopolysaccharides of Campylobacter jejuni serotype O:19: structures of core oligosaccharide regions from the serostrain and two bacterial isolates from patients with Guillain-Barré syndrome. Biochemistry 33, 241-249 (1994)
Yuki, N., Taki, T., Inagaki, F., Kasama, T., Takahashi, M., Sato, K., Handa, S., Miyatake, T.: A bacterium lipopolysaccharide that elicits Gullain-Barré syndrome has a GM1 ganglioside-like structure. J. Exp. Med. 178, 1771–1775 (1993)
Silipo, A., Lanzetta, R., Amoresano, A., Parrilli, M., Molinaro, A.: Ammonium hydroxide hydrolysis: a valuable support in the MALDI-TOF mass spectrometry analysis of lipid a fatty acid distribution. J. Lipid. Res. 43, 2188–2195 (2002)
Vilcheze, C., Morbidoni, H.R., Weisbrod, T.R., Iwsamoto, H., Kuo, M., Sacchettini, J.C., Jacobs, W.R., Jr.: Inactivation of the inhA-encoded fatty acid synthase II (FASII) enoyl-acy carrier protein reductase induces accumulation of the FASI end products and cell lysis of Mycobacterium smegmatis. J. Bacteriol. 182, 4059–4067 (2000)
Silipo, A., De Castro, C., Lanzetta, R., Molinaro, A., Parrilli, M.: Full structural characterization of the lipid a components from the Agrobacterium tumefaciens strain C58 lipopolysaccharide fraction. Glycobiology 14, 805–815 (2004)
Hoshi, M., Kishimoto, Y.: Synthesis of cerebronic acid from lignoceric acid by rat brain preparation. Some properties and distribution of the hydroxylation system. J. Biol. Chem. 248, 4123–4130 (1973)
Sacktor, N.C., Griffin, J., Moser, A.B., Moser, H.W.: Effects of subperineurial injections of very-long-chain and medium-chain fatty acids into rat sciatic nerve. Neurochem. Pathol. 5, 71–83 (1986)
Horstman, A.L., Bauman, S.J., Kuehn, M.J.: Lipopolysaccharide 3-deoxy-D-manno-octulosonic acid (Kdo) core determines bacterial association of secreted toxin. J. Biol. Chem. 279, 8070–8075 (2004)
Abbas, A.K., Lichtman, A.H., Pober, J.S.: Cellular and Molecular Immunology chapter 9, pp. 209–210. WB Saunders, Philadelphia (1997)
Ishioka, G.Y., Lamont, A.G., Thomson, D., Bulbow, N., Gaeta, F.C., Sette, A., Grey, H.M.: MHC interaction and T cell recognition of carbohydrates and glycopeptides. J. Immunol. 148, 2446–2451 (1992)
Kalka-Moll, W.M., Tzianabos, A.O., Bryant, P.W., Niemeyer, M., Ploegh, H.L., Kasper, D.L.: Zwitterionic polysaccharides stimulate T cells by MHC class II-dependent interactions. J. Immunol. 169, 6149–6153 (2002)
Tzianabos, A.O., Onderdonk, A.B., Rosner, B., Cisneros, R.L., Kasper, D.L.: Structural features of polysaccharides that induce intra-abdominal abscesses. Science 262, 416–419 (1993)
Cobb, B.A., Wang, Q., Tzianabos, A.O., Kasper, D.L.: Polysaccharide processing and presentation by the MHC II pathway. Cell 117, 558–559 (2004)
Svennerholm, L.: The gangliosides. J. Lipid. Res. 5, 145–155 (1964)