Chemical reaction systems with a homoclinic bifurcation: an inverse problem
Tóm tắt
An inverse problem framework for constructing reaction systems with prescribed properties is presented. Kinetic transformations are defined and analysed as a part of the framework, allowing an arbitrary polynomial ordinary differential equation to be mapped to the one that can be represented as a reaction network. The framework is used for construction of specific two- and three-dimensional bistable reaction systems undergoing a supercritical homoclinic bifurcation, and the topology of their phase spaces is discussed.
Tài liệu tham khảo
E.N. Kerner, Universal formats for nonlinear ordinary differential systems. J. Math. Phys. 22, 1366–1371 (1981)
K. Kowalski, Universal formats for nonlinear dynamical systems. Chem. Phys. Lett. 209, 167–170 (1993)
O.E. Rössler, A synthetic approach to exotic kinetics (with examples). Lect. Notes Biomath. 4, 546–582 (1974)
M.T. Borisuk, J.J. Tyson, Bifurcation analysis of a model of mitotic control in frog eggs. J. Theor. Biol. 195, 69–85 (1998). doi:10.1006/jtbi.1998.0781
S. Kar, W.T. Baumann, M.R. Paul, J.J. Tyson, Exploring the roles of noise in the eukaryotic cell cycle. Proc. Natl. Acad. Sci. USA 106, 6471–6476 (2009)
Hárs, V., Tóth, J., On the inverse problem of reaction kinetics. in Qualitative Theory of Differential Equations, eds. by M. Farkas, L. Hatvani (1981), pp. 363–379
R. Erban, S.J. Chapman, I. Kevrekidis, T. Vejchodsky, Analysis of a stochastic chemical system close to a SNIPER bifurcation of its mean-field model. SIAM J. Appl. Math. 70(3), 984–1016 (2009)
H.H. Robertson, The solution of a set of reaction rate equations, in Numerical Analysis: An Introduction, ed. by J. Walsh (Academic Press, London, 1966), pp. 178–182
M.B. Elowitz, S. Leibler, A synthetic oscillatory network of transcriptional regulators. Nature 403(6767), 335–338 (2000)
D. Soloveichik, G. Seelig, E. Winfree, DNA as a universal substrate for chemical kinetics. Proc. Natl. Acad. Sci. 107(12), 5393–5398 (2010)
P. Érdi, J. Tóth, Mathematical Models of Chemical Reactions. Theory and Applications of Deterministic and Stochastic Models (Manchester University Press, Princeton University Press, Manchester, Princeton, 1989)
G. Póta, Two-component bimolecular systems cannot have limit cycles: a complete proof. J. Chem. Phys. 78(3), 1621–1622 (1983)
M. Feinberg, Lectures on Chemical Reaction Networks (Delivered at the Mathematics Research Center, University of Wisconsin, 1979)
G. Craciun, C. Pantea, Identifiability of chemical reaction networks. J. Math. Chem. 44, 244–259 (2009)
R. Csikja, J. Tóth, Blow up in polynomial differential equations. Enformatika. Int. J. Appl. Math. Comput. Sci. 4(2), 728–733 (2007)
E.O. Voit, H.A. Martens, S.W. Omholt, 150 years of the mass action law. PLOS Comput. Biol. 11(1), e1004012 (2015)
V. Chellaboina, S.P. Bhat, W.M. Haddad, D.S. Bernstein, Modeling and analysis of mass-action kinetics. IEEE Control Syst. Mag. 29, 60–78 (2009)
L. Szili, J. Tóth, On the origin of turing instability. J. Math. Chem. 22, 39–53 (1997)
J. Tóth, V. Hárs, Orthogonal transforms of the Lorenz- and Rössler-equation. Physica 19D, 135–144 (1986)
B. Schuman, J. Tóth, No limit cycles in two species second order kinetics. Bull. Sci. Math. 127(3), 222–230 (2003)
N. Samardzija, L.D. Greller, E. Wasserman, Nonlinear chemical kinetic schemes derived from mechanical and electrical dynamical systems. J. Chem. Phys. 90, 2296–2304 (1989)
T. Wilhelm, R. Heinrich, Smallest chemical reaction system with Hopf bifurcation. J. Chem. Phys. 17, 1–14 (1995)
G. Szederkényi, Comment on “identifiability of chemical reaction networks” by G. Craciun and C. Pantea. J. Math. Chem. 45, 1172–1174 (2009)
G. Szederkényi, K.M. Hangos, T. Péni, Maximal and minimal realizations of reaction kinetic systems: computation and properties. MATCH Commun. Math. Comput. Chem. 65(2), 309–332 (2011)
C. Escher, Bifurcation and coexistence of several limit cycles in models of open two-variable quadratic mass-action systems. Chem. Phys. 63, 337–348 (1981)
F.R. Grantmacher, Applications of the Theory of Matrices (Interscience Publishers, INC., New York, 1959)
K.M. Hangos, G. Szederkényi, Mass action realizations of reaction kinetic system models on various time scales. J. Phys.: Conf. Ser. 268, 012009 (2011)
W. Klonowski, Simplifying principles for chemical and enzyme reaction kinetics. Biophys. Chem. 18(3), 73–87 (1983)
A. Okniński, Catastrophe Theory, vol. 33 (Elsevier Science, Amsterdam, 1992)
K.M. Hangos, Engineering model reduction and entropy-based Lyapunov functions in chemical reaction kinetics. Entropy 12, 772–797 (2010)
K. Kowalski, W.H. Steeb, Nonlinear Dynamical Systems and Carleman Linearization (Word Scientific, Singapore, 1991)
T. Wilhelm, Chemical systems consisting only of elementary steps—a paradigma for nonlinear behavior. J. Math. Chem. 27, 71–88 (2000)
Y.A. Kuznetsov, Elements of Applied Bifurcation Theory, 2nd edn. (Springer-Verlag, New York, 2000)
J.M.G. Vilar, H.Y. Kueh, N. Barkai, S. Leibler, Mechanisms of noise-resistance in genetic oscillators. Proc. Natl. Acad. Sci. USA 99(9), 5988–5992 (2002)
Y. Dublanche, K. Michalodimitrakis, N. Kummerer, M. Foglierini, L. Serrano, Noise in transcription negative feedback loops: simulation and experimental analysis. Mol. Syst. Biol. 2(41), E1–E12 (2006)
B. Sandstede, Constructing dynamical systems having homoclinic bifurcation points of codimension two. J. Dyn. Differ. Equ. 9(2), 269–288 (1997)
J.D. Lawrence, A Catalog of Special Plane Curves (Dover, New York, 1972)
P. Érdi, G. Lente, Stochastic Chemical Kinetics. Theory and (Mostly) Systems Biological Applications (Springer Series in Synergetics, New York, 2014)