Chemical proteomics and its application to drug discovery
Tài liệu tham khảo
Reiss, 2001, Drug discovery of the future: the implications of the human genome project, Trends Biotechnol., 19, 496, 10.1016/S0167-7799(01)01811-X
Lander, 2001, Initial sequencing and analysis of the human genome, Nature, 409, 860, 10.1038/35057062
Venter, 2001, The sequence of the human genome, Science, 291, 1304, 10.1126/science.1058040
Cockett, 2000, Applied genomics: integration of the technology within pharmaceutical research and development, Curr. Opin. Biotechnol., 11, 602, 10.1016/S0958-1669(00)00151-8
Norin, 2002, Structural proteomics: developments in structure-to-function predictions, Trends Biotechnol., 20, 79, 10.1016/S0167-7799(01)01884-4
Pandey, 2000, Proteomics to study genes and genomes, Nature, 405, 837, 10.1038/35015709
Cravatt, 2000, Chemical strategies for the global analysis of protein function, Curr. Opin. Chem. Biol., 4, 663, 10.1016/S1367-5931(00)00147-2
Bogyo, 2000, Selective targeting of lysosomal cysteine proteases with radiolabeled electrophilic substrate analogs, Chem. Biol., 7, 27, 10.1016/S1074-5521(00)00061-2
Bogyo, 1997, Covalent modification of the active site threonine of proteasomal β subunits and the Escherichia coli homolog HslV by a new class of inhibitors, Proc. Natl. Acad. Sci. U.S.A., 94, 6629, 10.1073/pnas.94.13.6629
Liu, 1999, Activity-based protein profiling: the serine hydrolases, Proc. Natl. Acad. Sci. U.S.A., 96, 14694, 10.1073/pnas.96.26.14694
Thornberry, 1994, Inactivation of interleukin-1 β converting enzyme by peptide (acyloxy)methyl ketones, Biochemistry, 33, 3934, 10.1021/bi00179a020
Faleiro, 1997, Multiple species of CPP32 and Mch2 are the major active caspases present in apoptotic cells, EMBO J., 16, 2271, 10.1093/emboj/16.9.2271
Colman, 1997, Chemical arrows for enzymatic targets, FASEB J., 11, 217, 10.1096/fasebj.11.4.9068610
Walsh, 1984, Suicide substrates, mechanism-based enzyme inactivators: recent developments, Annu. Rev. Biochem., 53, 493, 10.1146/annurev.bi.53.070184.002425
Goshe MB, Smith RD: Stable isotope-coded proteomic mass spectrometry. Curr Opin Biotechnol 2002, 13:in press.
Greenbaum, 2000, Epoxide electrophiles as activity-dependent cysteine protease profiling and discovery tools, Chem. Biol., 7, 569, 10.1016/S1074-5521(00)00014-4
Therrien, 2000, Molecular basis of antibiotic resistance and beta-lactamase inhibition by mechanism-based inactivators: perspectives and future directions, FEMS Microbiol. Rev., 24, 251, 10.1111/j.1574-6976.2000.tb00541.x
Betley, 2002, Direct screening for phosphatase activity by turnover-based capture of protein catalysts, Angew. Chem. Int. Ed. Engl., 41, 775, 10.1002/1521-3773(20020301)41:5<775::AID-ANIE775>3.0.CO;2-F
Wang, 1994, Suicide inactivation of human prostatic acid phosphatase and a phosphotyrosine phosphatase, Biochem. Biophys. Res. Commun., 200, 577, 10.1006/bbrc.1994.1487
Janda, 1997, Chemical selection for catalysis in combinatorial antibody libraries, Science, 275, 945, 10.1126/science.275.5302.945
Colman, 1983, Affinity labeling of purine nucleotide sites in proteins, Annu. Rev. Biochem., 52, 67, 10.1146/annurev.bi.52.070183.000435
Zoller, 1981, Affinity labeling of cAMP-dependent protein kinase with p-fluorosulfonylbenzoyl adenosine. Covalent modification of lysine 71, J. Biol. Chem., 256, 10837, 10.1016/S0021-9258(19)68519-4
Hohenegger, 1997, Covalent modification of G proteins by affinity labeling, Methods Mol. Biol., 83, 179
Gygi, 1999, Quantitative analysis of complex protein mixtures using isotope-coded affinity tags, Nat. Biotechnol., 17, 994, 10.1038/13690
Adam, 2002, Proteomic profiling of mechanistically distinct enzyme classes using a common chemotype, Nat. Biotechnol., 20, 805, 10.1038/nbt714
Borodovsky, 2001, A novel active site-directed probe specific for deubiquitylating enzymes reveals proteasome association of USP14, EMBO J., 20, 5187, 10.1093/emboj/20.18.5187
Borodovsky, 2002, Chemistry-based functional proteomics reveals novel members of the deubiquitinating enzyme family, Chem. Biol., 9, 1149, 10.1016/S1074-5521(02)00248-X
Amersham Bioscience: URL: http://www5.amershambiosciences.com/aptrix/upp01077.nsf/Content/gel_blot_typhoon_home_page
MolecularProbes: URL: http://www.probes.com/media/publications/150.pdf
Greenbaum, 2002, Chemical approaches for functionally probing the proteome, Mol. Cell. Proteomics, 1, 60, 10.1074/mcp.T100003-MCP200
Patricelli, 2001, Direct visualization of serine hydrolase activities in complex proteomes using fluorescent active site-directed probes, Proteomics, 1, 1067, 10.1002/1615-9861(200109)1:9<1067::AID-PROT1067>3.0.CO;2-4
Rappsilber, 2002, What does it mean to identify a protein in proteomics?, Trends Biochem. Sci., 27, 74, 10.1016/S0968-0004(01)02021-7
Gygi, 2000, Mass spectrometry and proteomics, Curr. Opin. Chem. Biol., 4, 489, 10.1016/S1367-5931(00)00121-6
Wilchek, 1990, Introduction to avidin-biotin technology, Methods Enzymol., 184, 5, 10.1016/0076-6879(90)84256-G
Zhou, 2002, Quantitative proteome analysis by solid-phase isotope tagging and mass spectrometry, Nat. Biotechnol., 20, 512, 10.1038/nbt0502-512
Myers, 2001, Drug discovery – an operating model for a new era, Nat. Biotechnol., 19, 727, 10.1038/90765
Baruch, 2001, Defining a link between gap junction communication, proteolysis, and cataract formation, J. Biol. Chem., 276, 28999, 10.1074/jbc.M103628200
Greenbaum DC, Baruch A, Grainger M, Bozdech Z, Medzihradszky KF, Engel J, Holder AA, De Risi J, Bogyo M: Identification of a protease-dependent invasion pathway in the human malarial parasite, Plasmodium falciparum. Science 2002, in press.
Jessani, 2002, Enzyme activity profiles of the secreted and membrane proteome that depict cancer cell invasiveness, Proc. Natl. Acad. Sci. U.S.A., 99, 10335, 10.1073/pnas.162187599
Hopkins, 2002, The druggable genome, Nat. Rev. Drug Discov., 1, 727, 10.1038/nrd892
Drews, 2000, Drug discovery: a historical perspective, Science, 287, 1960, 10.1126/science.287.5460.1960
Kidd, 2001, Profiling serine hydrolase activities in complex proteomes, Biochemistry, 40, 4005, 10.1021/bi002579j
McCluskey, 2002, Serine-threonine protein phosphatase inhibitors: development of potential therapeutic strategies, J. Med. Chem., 45, 1151, 10.1021/jm010066k
Cohen, 2002, Protein kinases – the major drug targets of the twenty-first century?, Nat. Rev. Drug Discov., 1, 309, 10.1038/nrd773
Garcia-Echeverria, 2000, ATP site-directed competitive and irreversible inhibitors of protein kinases, Med. Res. Rev., 20, 28, 10.1002/(SICI)1098-1128(200001)20:1<28::AID-MED2>3.0.CO;2-2
Wymann, 1996, Wortmannin inactivates phosphoinositide 3-kinase by covalent modification of Lys-802, a residue involved in the phosphate transfer reaction, Mol. Cell. Biol., 16, 1722, 10.1128/MCB.16.4.1722
Mustelin, 2002, Protein tyrosine phosphatases, Front Biosci., 7, 85, 10.2741/mustelin
Denu, 1998, Protein tyrosine phosphatases: mechanisms of catalysis and regulation, Curr. Opin. Chem. Biol., 2, 633, 10.1016/S1367-5931(98)80095-1
Arabcai, 1999, α-Haloacetophenone derivatives as photoreversible covalent inhibitors of protein tyrosine phosphatases, J. Am. Chem. Soc., 121, 5085, 10.1021/ja9906756