Chemical modification of poly(vinyltrimethylsilane) and poly(1-trimethylsilyl-1-propyne) using highly reactive metallating systems
Tóm tắt
Poly(vinyltrimethylsilane) and poly(1-trimethylsilyl-1-propyne) are metallated using normal and secondary butyllithium chelate complexes with tetramethylethylenediamine and superbases based on complexes of normal and secondary butyllithium with potassium tert-pentoxide as metallating agents. Optimal conditions ensuring metallation of poly(vinyltrimethylsilane) and poly(1-trimethylsilyl-1-propyne) with a high yield without degradation of macrochains are determined. Poly(vinyltrimethylsilane) and poly(1-trimethylsilyl-1-propyne) are functionalized via reactions of metallated polymers with CO2, trimethylsilyl chlorosulfone, diethyl disulfide, and ethylene oxide. COOH, SO3H, OH, and thioester groups are introduced into poly(vinyltrimethylsilane), and SO3H and COOH groups are incorporated into poly(1-trimethylsilyl-1-propyne). Upon introduction of carboxyl groups into poly(vinyltrimethylsilane), its hydrophilicity and permselectivity with respect to H2O/N2, H2O/H2, and H2O/CH4 pairs increase. The introduction of SO3H groups into poly(1-trimethylsilyl-1-propyne) and poly(vinyltrimethylsilane) leads to the appearance of proton conductivity of these polymers.
Tài liệu tham khảo
A. Akelah and A. Moet, Functionalized Polymers and Their Applications (Chapman & Hall, London, 1990).
J. A. Kerres, J. Membr. Sci. 185, 3 (2001).
C. Stone, T. S. Daynard, L. Q. Hu, et al., J. New Mater. Electrochem. Syst. 3, 43 (2000).
M. Yamabe, K. Akiyama, Y. Akatsuka, and M. Kato, Eur. Polym. J. 36, 1035 (2000).
K. D. Kreuer, J. Membr. Sci. 185, 29 (2001).
B. Adhikari, D. De, and S. Maiti, Prog. Polym. Sci. 25, 909 (2000).
H. R. Allcock, M. A. Hofmann, M. Catherine, et al., J. Membr. Sci. 201, 47 (2002).
N. Cornet, G. Beaudoing, and G. Gebel, Separ. Purif. Technol. 22–23, 681 (2001).
W.-Y. Su, Y. Wang, K. Min, and R. P. Quirk, Polymer 42, 5107 (2001).
U. Senthilkumar and B. S. R. Reddy, J. Membr. Sci. 232, 73 (2004).
H. Matsuyama, M. Teramoto, and K. Iwai, J. Membr. Sci. 93, 237 (1994).
J. H. Kim, B. R. Min, J. Won, et al., J. Polym. Sci., Part B: Polym. Phys. 42, 621 (2004).
J. H. Kim, B. R. Min, J. Won, and Y. S. Kang, J. Membr. Sci. 237, 199 (2003).
I. Pinnau and L. G. Toy, J. Membr. Sci. 184, 39 (2001).
J. H. Kim, B. R. Min, J. Won, et al., Macromolecules 36, 4577 (2003).
A. M. Y. Jaber, S. A. Ali, and G. O. Yahaya, J. Membr. Sci. 250, 85 (2005).
I. F. J. Vankelecom, Chem. Rev. 102, 3779 (2002).
L. Bagnell, K. Cavell, A. M. Hodges, et al., J. Membr. Sci. 85, 291 (1993).
Q. Liu, P. Jia, and H. Chen, J. Membr. Sci. 159, 233 (1999).
J. Song, Catal. Lett. 9, 339 (1991).
A. B. Solovieva, N. V. Belkina, and A. V. Vorobiev, J. Membr. Sci. 110, 253 (1996).
J. K. Lee, I. K. Song, and W. Y. Lee, Catal. Today 25, 345 (1995).
J. K. Lee, I. K. Song, and W. Y. Lee, Catal. Lett. 29, 241 (1994).
K. Nagai, T. Masuda, T. Nakagawa, et al., Prog. Polym. Sci. 26, 721 (2001).
K. Nagai, A. Higuchi, and T. Nakagawa, J. Appl. Polym. Sci. 54, 1207 (1994).
K. Nagai, A. Higuchi, and T. Nakagawa, J. Appl. Polym. Sci. 54, 1353 (1994).
A. D. Petrov, V. F. Mironov, B. A. Chernyshev, and V. A. Ponomarenko, in Syntheses of Organosilicon Monomers (Nauka, Moscow, 1961), p. 88 [in Russian].
L. Lochmann and J. M. J. Fréchet, Macromolecules 29, 1767 (1996).
L. Lochmann, K. L. Wooley, P. T. Ivanova, and J. M. J. Fréchet, J. Am. Chem. Soc. 115, 7043 (1993).
L. Lochmann, J. M. J. Fréchet, K. L. Wooley, and V. Smigol, Polym. Mater. Sci. Eng. 69, 426 (1993).
L. Lochmann and J. Trekoval, Collect. Czech. Chem. Commun. 53, 76 (1988).
A. J. Chalk, J. Polym. Sci., Part B 6, 649 (1968).
Borg Warner Corp. UK Patent No. 1,172,477 (1969).
M. A. Yampol’skaya, O. Yu. Okhlobystin, S. L. Davydova, and N. A. Platé, Vysokomol. Soedin. 8, 771 (1966).
Y. Minoura, K. Shina, and H. Harada, J. Polym. Sci., Part A-1 6, 559 (1968).
D. C. Evans, J. Polym. Sci., Part A-1 12, 247 (1974).
N. Tata and S. Halasa, J. Polym. Sci., Part A-1 9, 139 (1971).
Y. Nagase, K. Sugimoto, Y. Takamura, and K. Matsui, J. Appl. Polym. Sci. 42, 185 (1991).
Y. Nagase, K. Sugimoto, Y. Takamura, and K. Matsui, J. Appl. Polym. Sci. 43, 1227 (1991).
V. S. Khotimsky, M. V. Tchirkova, E. G. Litvinova, et al., J. Polym. Sci., Part A: Polym. Chem. 41, 2133 (2003).
N. S. Nametkin, S. G. Durgar’yan, and V. S. Khotimskii, Dokl. Akad. Nauk SSSR 166, 1118 (1966).
L. Lochmann, H. Jakubuv, and L. Brandsma, Collect. Czech. Chem. Commun. 58, 1445 (1993).
R. N. Young, R. P. Quirk, and L. J. Fetters, Adv. Polym. Sci., No. 1, 56 (1984).
M. S. Farrale and M. S. Fréchet, J. Org. Chem. 41, 3877 (1976).
M. S. Fréchet, M. D. De Smet, and M. S. Farrale, Polymer 20, 675 (1979).
M. V. Chirkova, Candidate’s Dissertation in Chemistry (Moscow, 2004).
V. V. Teplyakov, A. L. Evseenko, E. G. Novitskii, and S. G. Durgar’yan, Plast. Massy, No. 5, 49 (1978).
Yu. P. Yampol’skii, E. G. Novitskii, and S. G. Durgar’yan, Zavod. Lab., No. 3, 256 (1980).
V. Vorontsov, V. Khotimskii, S. Durgar’yan, and A. Krapivin, Izv. Akad. Nauk SSSR, Ser. Khim., No. 5, 1147 (1980).
V. S. Khotimskii and P. V. Pivovarov, Izv. Ross. Akad. Nauk, Ser. Khim. 51, 2088 (2002).
D. Wilhelm, T. Clark, P. v. R. Schleyer, et al., J. Am. Chem. Soc. 106, 361 (1984).
L. Lochmann, Eur. J. Inorg. Chem, No. 6, 1115 (2000).
I. N. Shtennikova, G. F. Kolbina, V. S. Khotimskii, et al., Vysokomol. Soedin., Ser. A 40, 1569 (1998) [Polymer Science, Ser. A 40, 963 (1998)].
I. N. Stennikova, G. F. Kolbina, A. V. Yakimansky, et al., Eur. Polym. J. 35, 2073 (1999).
V. S. Khotimskii, Candidate’s Dissertation in Chemistry (Moscow, 1967).