Chemical ionisation mass spectrometer for measurements of OH and Peroxy radical concentrations in moderately polluted atmospheres
Tóm tắt
A new version of an atmospheric pressure chemical ionisation mass spectrometer has been developed for ground based in situ atmospheric measurements of OH and total peroxy (HO2 + organic peroxy) radicals. Based on the previously developed principle of chemical conversion of OH radicals to H2SO4 in reaction with SO2 and detection of H2SO4 using an ion molecule reaction with NO
3
─
, the new instrument is equipped with a turbulent chemical conversion reactor allowing for measurements in moderately polluted atmosphere at NO concentrations up to several ppb. Unlike other similar devices, where the primary NO
3
─
ions are produced using radioactive ion sources, the new instrument is equipped with a specially developed corona discharge ion source. According to laboratory measurements, the overall accuracy and detection limits are estimated to be, respectively, 25% and 2 × 105 molecule cm-3 for OH and 30% and 1 × 105 molecule cm-3 for HO2 at 10 min integration times. The detection limit for measurements of OH radicals under polluted conditions is 5 × 105 molecules cm-3 at 10 min integration times. Examples of ambient air measurements during a field campaign near Paris in July 2007 are presented demonstrating the capability of the new instrument, although with reduced performance due to the employment of non isotopic SO2.
Từ khóa
Tài liệu tham khảo
Appelhans, A.D., Dahl, D.A.: SIMION ion optics simulations at atmospheric pressure. Int. J. Mass Spectrom. 244(1), 1–14 (2005)
Berresheim, H., Elste, T., Plass-Dülmer, C., Eiseleb, F.L., Tanner, D.J.: Chemical ionization mass spectrometer for long-term measurements of atmospheric OH and H2SO4. Int. J. Mass Spectrom. 202, 91–109 (2000)
Butkovskaya, N., Rayez, M.-T., Rayez, J.-C., Kukui, A., Le Bras, G.: Water vapour effect on the HNO3 yield in the HO2 + NO reaction: 1. Experimental and theoretical evidence. J. Phys. Chem. A (2009 submitted)
Cantrell, C.A., Zimmer, A., Tyndall, G.S.: Absorption cross sections for water vapor from 183 nm to 193 nm. Geophys. Res. Lett. 24, 2195–2198 (1997)
Creasey, D.J., Heard, D.E., Lee, J.D.: Absorption cross section measurements of water vapour and oxygen at 185 nm. Implications for the calibration of field instruments to measure OH, HO2 and RO2 radicals. Geophys. Res. Lett. 27, 1651–1654 (2000)
Dahl, D. A.: SIMION 3D (Version 7.0) Idaho National Engineering and Environmental Laboratory; Idaho Falls, ID, (2000)
Douglas, D.J., French, J.B.: Collisional focusing effects in radio frequency quadrupoles. J. Am. Soc. Mass Spectrom. 3, 398–408 (1992)
Dubey, M.K., Hanisco, T.F., Wennberg, P.O., Anderson, J.G.: Monitoring potential photochemical interference in laser induced fluorescence measurements of atmospheric OH. Geophys. Res. Lett. 23, 3215–3218 (1996)
Dusanter, S., Vimal, D., Stevens, P.S., Volkamer, R., Molina, L.T.: Measurements of OH and HO2 concentrations during the MCMA-2006 field campaign - part 1: deployment of the Indiana University laser-induced fluorescence instrument. Atmos. Chem. Phys. Discuss. 8, 13689–13739 (2008)
Edwards, G.D., Cantrell, C.A., Stephens, S., Hill, B., Goyea, O., Shetter, R.E., Mauldin III, R.L., Kosciuch, E., Tanner, D.J., Eisele, F.: Chemical ionization mass spectrometer instrument for the measurement of tropospheric HO2 and RO2. Anal. Chem. 75(20), 5317–5327 (2003)
Eisele, F.L., Tanner, D.J.: Ion-assisted tropospheric OH measurements. J. Geophys. Res. 96(D5), 9295–9308 (1991)
Emmerson, K.M., Carslaw, N., Carpenter, L.J., Heard, D.E., Lee, J.D., Pilling, M.J.: Urban atmospheric chemistry during the PUMA Campaign 1: comparison of modelled OH and HO2 concentrations with measurements. J. Atm. Chem. 52, 143–164 (2005)
Faloona, I.C., Tan, D., Lesher, R.L., Hazen, N.L., Frame, C.L., Simpas, J.B., Harder, H., Mertinez, M., Di Carlo, P., Ren, X., Brune, W.H.: A laser-induced fluorescence instrument for detecting tropospheric OH and HO2: characteristics and calibration. J. Atm. Chem. 47, 139–169 (2004)
Gerlich, D.: Inhomogeneous RF fields: A versatile tool for the study of processes with slow ions. In: Ng, C. Y., Baer, M. (eds.) State selected and state-to state ion-molecule reaction dynamics. Part 1: Experiment, Adv. Chem. Phys. Vol. LXXXII, pp. 1–176, Wiley, New York (1992)
Hanke, M., Uecker, J., Reiner, T., Arnold, F.: Atmospheric peroxy radicals: ROXMAS, a new mass-spectrometric methodology for speciated measurements of HO2 and ΣRO2 and first results. Int. J. Mass Spectrom. 213, 91–99 (2002)
Heard, D.E., Pilling, M.J.: Measurement of OH and HO2 in the troposphere. Chem. Rev. 103, 5163–5198 (2003)
Kanaya, Y., Cao, R., Akimoto, H., Fukuda, M., Komazaki, Y., Yokouchi, Y., Koike, M., Tanimoto, H., Takegawa, N., Kondo, Y.: Urban photochemistry in central Tokyo: 1. observed and modeled OH and HO2 radical concentrations during the winter and summer of 2004. J. Geophys. Res. 112(D2), 1312–1331 (2007)
Kukui, A., Borissenko, D., Laverdet, G., Le Bras, G.: Gas-phase reactions of OH radicals with dimethyl sulfoxide and methane sulfinic acid using turbulent flow reactor and chemical ionization mass spectrometry. J. Phys. Chem. A 107, 5732–5742 (2003)
Lovejoy, E.R., Curtius, J.: Cluster Ion thermal decomposition (II): master equation modelling in the low-pressure limit and fall-off regions. Bond energies for HSO ─4 (H2SO4) × (HNO3)y. J. Phys. Chem A 105, 10874–10883 (2001)
Mashino, M., Ninomiya, Y., Kawasaki, M., Wallington, T.J., Hurley, M.D.: Atmospheric chemistry of CF3CF = CF2: kinetics and mechanism of its reactions with OH radicals, Cl atoms, and ozone. J. Phys. Chem. A 104, 7255–7260 (2000)
McKeen, S.A., Mount, G., Eisele, F., Williams, E., Harder, J., Goldan, P., Kuster, W., Liu, S.C., Baumann, K., Tanner, D., Fried, A., Sewell, S., Cantrell, C., Shetter, R.: Photochemical modelling of hydroxyl and its relationship to other species during the tropospheric OH photochemistry experiment. J. Geophys. Res. 102(D5), 6467–6493 (1997)
Mihele, C.M., Mozurkewich, M., Hastie, D.R.: Radical loss in a chain reaction of CO and NO in the presence of water: Implications for the radical amplifier and atmospheric chemistry. Int. J. Chem. Kinet. 31, 145–152 (1999)
Nagato, K., Matsui, Y., Miyata, T., Yamamuchi, T.: An analysis of the evolution of negative ions produced by a corona ionizer in air. Int. J. Mass Spectrom. 248, 142–147 (2006)
Page, J.S., Tolmachev, A.V., Tang, K., Smith, R.D.: Theoretical and experimental evaluation of the low m/z transmission of an electrodynamic ion funnel. J. Am. Soc. Mass Spectrom. 17, 586–592 (2006)
Reiner, T., Hanke, M., Arnold, F.: Atmospheric peroxy radical measurements by ion molecule reaction-mass spectrometry: A novel analytical method using amplifying chemical conversion to sulfuric acid. J. Geophys. Res. 102(D1), 1311–1326 (1997)
Ren, X., Brune, W.H., Cantrell, C.A., Edwards, G.D., Shirley, T., Metcalf, A.R., Lesher, R.L.: Hydroxyl and peroxy radical chemistry in a rural area of central pennsylvania: Observations and Model Comparisons. J. Atm. Chem. 52, 231–257 (2005)
Ren, X., Brune, W.H., Mao, J., Mitchell, M.J., Lesher, R.L., Simpas, J.B., Metcalf, A.R., Schwab, J.J., Cai, C., Li, Y., Demerjian, K.L., Felton, H.D., Boynton, G., Adams, A., Perry, J., He, Y., Zhou, X., Hou, J.: Behavior of OH and HO2 in the winter atmosphere in New York City. Atmos. Environ. 40, S252–S263 (2006)
Sander, S. P., Friedl, R. R., Golden, D. M., Kurylo, M. J., Moortgat, C. K., Wine, P. H., Ravishankara, A. R., Kolb, C. E., Molina, M. J., Finlayson-Pitts, B. J., Huie,R. E., Orkin, V. L.: Chemical kinetics and photochemical data for use in atmospheric studies, Evaluation Number 15. JPL Publication 06-2, NASA Jet Propulsion Laboratory, Pasadena, California (2006)
Scalny, J.D., Orszagh, J., Mason, N.J., Rees, J.A., Aranda-Gonzalvo, Y., Whitmore, T.D.: Mass spectrometric study of negative ions extracted from point to plane negative corona discharge in ambient air at atmospheric pressure. Int. J. Mass Spectrom. 272, 12–21 (2008)
Shaffer, S.A., Tang, K., Anderson, G.A., Prior, D.C., Udseth, H.R., Smith, R.D.: A novel ion funnel for focusing ions at elevated pressure using electrospray ionization mass spectrometry. Rapid Commun. Mass Spectrom. 11, 1813–1817 (1997)
Shirley, T.R., Brune, W.H., Ren, X., Mao, J., Lesher, R., Cardenas, B., Volkamer, R., Molina, L.T., Molina, M.J., Lamb, B., Velasco, E., Jobson, T., Alexander, M.: Atmospheric oxidation in the Mexico City Metropolitan Area (MCMA) during April 2003. Atmos. Chem. Phys. 6, 2753–2765 (2006)
Sjostedt, S.J., Huey, L.G., Tanner, D.J., Peischl, J., Chen, G., Dibb, J.E., Lefer, B., Hutterli, M.A., Beyersdor, A.J., Blake, N.J., Blake, D.R., Sueper, D., Ryerson, T., Burkhart, J., Stohl, A.: Observations of hydroxyl and the sum of peroxy radicals at Summit, Greenland during summer 2003. Atmos. Environ. 41, 5122–5137 (2007)
Tanner, D.J., Jefferson, A., Eisele, F.L.: Selected ion chemical ionisation mass spectrometric measurements of OH. J. Geophys. Res. 102(D5), 6415–6425 (1997)
Tolmachev, A.V., Kim, T., Udseth, H.R., Smith, R.D., Bailey, T.B., Futrell, J.H.: Simulation-based optimization of the electrospray ion funnel for high sensitivity electrospray ionization mass spectrometry. Int. J. Mass Spectrom. 203, 31–47 (2000)
Tolmachev, A.V., Vilkov, A.N., Bogdanov, B., Pǎsa-Tolić, L., Masselon, C.D., Smith, R.D.: The effective ion temperature treatment. J. Am. Soc. Mass Spectrom. 15, 1616–1628 (2004)
Zafonte, L., Rieger, P.L., Holmes, J.R.: Nitrogen dioxide photolysis in the Los Angeles atmosphere. Environ. Sci. Technol. 11(5), 483–487 (1977)