Chemical gas sensor drift compensation using classifier ensembles

Elsevier BV - Tập 166-167 - Trang 320-329 - 2012
Alexander Vergara1, Shankar Vembu1, Tuba Ayhan2, M. A. Ryan3, M. L. Homer3, Ramón Huerta1
1BioCircuits Institute, University of California San Diego, La Jolla, CA, 92093, USA
2Department of Electronics and Communication Engineering, Technical University of Istanbul, Maslak, TR-34469 Istanbul, Turkey
3Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Pasadena, CA 91109, USA

Tóm tắt

Từ khóa


Tài liệu tham khảo

Gardner, 1999

Persaud, 1982, Analysis of discrimination mechanisms in the mammalian olfactory system using a model nose, Nature, 299, 352, 10.1038/299352a0

Holmberg, 1996, Drift counteraction for an electronic nose, Sensors and Actuators B: Chemical, 36, 528, 10.1016/S0925-4005(97)80124-4

Årtusson, 2000, Drift correction for gas sensors using multivariate methods, Journal of Chemometrics, 14, 711, 10.1002/1099-128X(200009/12)14:5/6<711::AID-CEM607>3.0.CO;2-4

Göpel, 1992, Definitions and typical example

Davide, 1996, Frequency analysis of drift in chemical sensors, 150

Zuppa, 2004, Drift counteraction with multiple self-organising maps for an electronic nose, Sensors and Actuators B: Chemical, 98, 305, 10.1016/j.snb.2003.10.029

M. Holmberg, T. Artusson, Drift compensation, standards, and calibration methods, Handbook of Artificial Olfaction Machines, WILEY-VCH Weinheim, Germany, 2003, pp. 325–346.

Hierlemann, 2008, Higher-order chemical sensing, ACS Chemical Reviews, 108, 563, 10.1021/cr068116m

Romain, 2010, Long term stability of metal oxide-based gas sensors for e-nose environmental applications: an overview, Sensors and Actuators B: Chemical, 146, 502, 10.1016/j.snb.2009.12.027

Romain, 2002, Three years experiment with the same tin oxide sensor arrays for the identification of malodorous sources in the environment, Sensors and Actuators B: Chemical, 84, 271, 10.1016/S0925-4005(02)00036-9

Figaro USA, Inc., http://www.figarosensor.com/.

Göpel, 1994, New materials and transducers for chemical sensors, Sensors and Actuators B: Chemical, 18, 1, 10.1016/0925-4005(94)87049-7

Yamazoe, 1991, New approaches for improving semiconductor gas sensors, Sensors and Actuators B: Chemical, 5, 7, 10.1016/0925-4005(91)80213-4

Dobos, 1983, Performance of gas-sensitive Pd-gate mosfets with SiO2 and Si3N4 gate insulators, Sensors and Actuators, 4, 593, 10.1016/0250-6874(83)85072-0

Roth, 1996, Drift reduction of organic coated gas-sensors by temperature modulation, Sensors and Actuators B: Chemical, 36, 358, 10.1016/S0925-4005(97)80096-2

Vergara, 2007, Quantitative gas mixture analysis using temperature-modulated micro-hotplate gas sensors: selection and validation of the optimal modulating frequencies, Sensors and Actuators B: Chemical, 123, 1002, 10.1016/j.snb.2006.11.010

Haugen, 2000, A calibration method for handling the temporal drift of solid state gas-sensors, Analytica Chimica Acta, 407, 23, 10.1016/S0003-2670(99)00784-9

Gutierrez-Osuna, 2000, Drift reduction for metal-oxide sensor arrays using canonical correlation regression and partial least squares

Ziyatdinov, 2010, Drift compensation of gas sensor array data by common principal component analysis, Sensors and Actuators B: Chemical, 146, 460, 10.1016/j.snb.2009.11.034

Schölkopf, 1998, Nonlinear component analysis as a kernel eigenvalue problem, Neural Computation, 10, 1299, 10.1162/089976698300017467

Wang, 2003, Mining concept-drifting data streams using ensemble classifiers

Kolter, 2003, Dynamic weighted majority: A new ensemble method for tracking concept drift

Kolter, 2005, Using additive expert ensembles to cope with concept drift

Kolter, 2007, Dynamic weighted majority: An ensemble method for drifting concepts, Journal of Machine Learning Research, 8, 2755

Bronkhorst High-Tech B.V, http://www.bronkhorst.com/.

Airgas, Inc., http://www.airgas.com/.

The LabVIEW Environment, http://www.ni.com/labview/.

Vergara, 2010, Information-theoretic optimization of chemical sensors, Sensors and Actuators B: Chemical, 148, 298, 10.1016/j.snb.2010.04.040

Pardo, 1998, Nonlinear inverse dynamic models of gas sensing systems based on chemical sensor arrays for quantitative measurements, IEEE Transactions on Instrumentation and Measurement, 47, 644, 10.1109/19.744316

Llobet, 1997, Qualitative and quantitative analysis of volatile organic compounds using transient and steady-state responses of a thick-film tin oxide gas sensor array, Sensors and Actuators B: Chemical, 41, 13, 10.1016/S0925-4005(97)80272-9

Muezzinoglu, 2009, Acceleration of chemo-sensory information processing using transient features, Sensors and Actuators B: Chemical, 137, 507, 10.1016/j.snb.2008.10.065

Cortes, 1995, Support-vector networks, Machine Learning, 20, 273, 10.1007/BF00994018

Rifkin, 2004, In defense of one-vs-all classification, Journal of Machine Learning Research, 5, 101

C.-C. Chang, C.-J. Lin, LIBSVM: A Library for Support Vector Machines, Software. Available at http://www.csie.ntu.edu.tw/cjlin/libsvm, 2001.

Klinkenberg, 2000, Detecting concept drift with support vector machines

2006