Chemical composition dispersion in bi-metallic nanoparticles: semi-automated analysis using HAADF-STEM

T. Epicier1, K. Sato2, F. Tournus3, T. Konno2
1MATEIS CNRS UMR5510, Bat. Blaise Pascal, INSA-Lyon, Villeurbanne Cedex, France
2Material Processing and Characterization Division, Institute for Materials Research, Tohoku University, Sendai, Japan
3LPMCN, UMR 5586 CNRS & Université de Lyon, Université Lyon 1, Villeurbanne Cedex, France

Tóm tắt

We present a method using high-angle annular dark field scanning transmission electron microscopy (HAADF-STEM) to determine the chemical composition of bi-metallic nanoparticles. This method, which can be applied in a semi-automated way, allows large scale analysis with a statistical number of particles (several hundreds) in a short time. Once a calibration curve has been obtained, e.g., using energy-dispersive X-ray spectroscopy (EDX) measurements on a few particles, the HAADF integrated intensity of each particle can indeed be directly related to its chemical composition. After a theoretical description, this approach is applied to the case of iron–palladium nanoparticles (expected to be nearly stoichiometric) with a mean size of 8.3 nm. It will be shown that an accurate chemical composition histogram is obtained, i.e., the Fe content has been determined to be 49.0 at.% with a dispersion of 10.4 %. HAADF-STEM analysis represents a powerful alternative to fastidious single particle EDX measurements, for the compositional dispersion in alloy nanoparticles.

Từ khóa


Tài liệu tham khảo

Abel KA, Boyer JC, Andrei CM, Van Veggel FCJM (2011) Analysis of the shell thickness distribution on NaYF4/NaGdF4 core/shell nanocrystals by EELS and EDS. J Phys Chem Lett 2:185–189. doi:10.1021/jz101593g

Acevedo D, Perez M, Epicier T, Kozeschnik E, Perrard F, Sourmail T (2008) Kinetics of precipitation and dissolution in model FeCV and FeCVNb alloy, and a microalloyed ultra high strength spring steel. In: New developments on metallurgy and applications on high strength steels, TMS Conference 2008, Buenos Aires, 26 May 2008

Babonneau D, Lantiat D, Camelio S, Toudert J, Simonot L, Pailloux F, Denanot MF, Girardeau T (2008) Gold and silver nanoparticles embedded in dielectric-capping layers studied by HAADF-STEM. Eur Phys J Appl Phys 44:3–9. doi:10.1051/epjap:2008051

Baletto F, Ferrando R (2005) Structural properties of nanoclusters: energetic, thermodynamic, and kinetic effects. Rev Mod Phys 77:371–423. doi:10.1103/RevModPhys.77.371

Blanc N, Tournus F, Dupuis V, Epicier T (2011) Measuring the L10 chemical order parameter of a single CoPt nanoparticle smaller than 4 nm. Phys Rev B 83:092403. doi:10.1103/PhysRevB.83.092403

Curley BC, Johnston RL, Young NP, Li ZY, Di Vece M, Palmer RE, Bleloch AL (2007) Combining theory and experiment to characterize the atomic structures of surface-deposited Au309 clusters. J Phys Chem C 111:17846–17851. doi:10.1021/jp0713099

Di Vece M, Bals S, Verbeeck J, Lievens P, Van Tendeloo G (2009) Compositional changes of Pd-Au bimetallic nanoclusters upon hydrogenation. Phys Rev B 80:125420. doi:10.1103/PhysRevB.80.125420

Epicier T (2006) Transmission electron microscopy and nano-precipitation. Adv Eng Mater 8:1197–1201. doi:10.1002/adem.200600185

Ferrando R, Jellinek J, Johnston RL (2008) Nanoalloys: from theory to applications of alloy clusters and nanoparticles. Chem Rev 108:845–910. doi:10.1021/cr040090g

Graoui H, Giorgio S, Henry CR (2001) Effect of the interface structure on the high-temperature morphology of supported metal clusters. Philos Mag B 81:1649–1658. doi:10.1080/13642810108223109

Jesson DE, Pennycook SJ (1995) Incoherent imaging of crystals using thermally scattered electrons. Proc R Soc Lond A 449:273–293. doi:10.1098/rspa.1995.0044

Kizuka T, Tanaka N (1997) Atomic process of epitaxial growth of gold on magnesium oxide studied by cross-sectional time-resolved high-resolution electron microscopy. Phys Rev B 56:R10079–R10082. doi:10.1103/PhysRevB.56.R10079

Klenov DO, Findlay SD, Allen LJ, Stemmer S (2007) Influence of orientation on the contrast of high-angle annular dark-field images of silicon. Phys Rev B 76:014111. doi:10.1103/PhysRevB.76.014111

LeBeau JM, Findlay SD, Allen LJ, Stemmer S (2008) Quantitative atomic resolution scanning transmission electron microscopy. Phys Rev Lett 100:206101. doi:10.1103/PhysRevLett.100.206101

LeBeau JM, Finlay SD, Allen LJ, Stemmer S (2010) Standardless atom counting in scanning transmission electron microscopy. Nano Lett 10:4405–4408. doi:10.1021/nl102025s

Lee JG, Lee J, Tanaka T, Mori H (2006) In situ HREM observation of crystalline-to-gas transition in nanometer-sized Ag particles. Phys Rev Lett 96:075504. doi:10.1103/PhysRevLett.96.075504

Lee YW, Kim M, Hwan Kim Z, Woo Han S (2009) One-step synthesis of Au@Pd core-shell nanooctahedron. J Am Chem Soc 131:17036. doi:10.1021/ja905603p

Li BQ, Zuo JM (2005) Structure and shape transformation from multiply twinned particles to epitaxial nanocrystals: importance of interface on the structure of Ag nanoparticles. Phys Rev B 72:085434. doi:10.1103/PhysRevB.72.085434

Li ZY, Young NP, Di Vece M, Palomba S, Palmer RE, Bleloch AL, Curley BC, Johnston RL, Jiang J, Yuan J (2008) Three-dimensional atomic-scale structure of size-selected gold nanoclusters. Nature 451:46–48. doi:10.1038/nature06470

Maccagnano-Zacher SE, Mkhoyan KA, Kirkland EJ, Silcox J (2008) Effects of tilt on high-resolution ADF-STEM imaging. Ultramicroscopy 108:718–726. doi:10.1016/j.ultramic.2007.11.003

Mkhoyan KA, Maccagnano-Zacher SE, Kirkland EJ, Silcox J (2008) Effects of amorphous layers on ADF-STEM imaging. Ultramicroscopy 108:791–803. doi:10.1016/j.ultramic.2008.01.007

Molina SI, Sales DL, Galindo PL, Fuster D, González Y, Alén B, González L, Varela M, Pennycook SJ (2009) Column-by-column compositional mapping by Z-contrast imaging. Ultramicroscopy 109:172–176. doi:10.1016/j.ultramic.2008.10.008

Oshima Y, Hashimoto Y, Tanishiro Y, Takayanagi K, Sawada H, Kaneyama T, Kondo Y, Hashikawa N, Asayama K (2010) Detection of arsenic dopant atoms in a silicon crystal using a spherical aberration corrected scanning transmission electron microscope. Phys Rev B 81:035317. doi:10.1103/PhysRevB.81.035317

Sato K, Hirotsu Y, Mori H, Wang Z, Hirayama T (2005) Long-range order parameter of single L10-FePd nanoparticle determined by nanobeam electron diffraction: particle size dependence of the order parameter. J Appl Phys 98:024308. doi:10.1063/1.1985973

Sato K, Konno TJ, Hirotsu Y (2009) Atomic structure imaging of L10-type FePd nanoparticles by spherical aberration corrected high-resolution transmission electron microscopy. J Appl Phys 105:034308. doi:10.1063/1.3074505

Sato K, Wen JG, Zuo JM (2009) Intermetallic ordering and structure in Fe-Pd alloy nanoparticles. J Appl Phys 105:093509. doi:10.1063/1.3122601

Shima H, Oikawa K, Fujita A, Fukamichi K, Ishida K, Sakuma A (2004) Lattice axial ratio and large uniaxial magnetocrystalline anisotropy in L10-type FePd single crystals prepared under compressive stress. Phys Rev B 70:224408. doi:10.1103/PhysRevB.70.224408

Silly F, Castell MR (2005) Selecting the shape of supported metal nanocrystals: Pd huts, hexagons, or pyramids on SrTiO3(001). Phys Rev Lett 94:046103. doi:10.1103/PhysRevLett.94.046103

Treacy MMJ, Rice SB (1989) Catalyst particle sizes from Rutherford scattered intensities. J Microsc 156:211–234. doi:10.1111/j.1365-2818.1989.tb02920.x

Treacy MMJ (1999) Pt agglomeration and entombment in single channel zeolites: Pt/LTL. Microporous Mesoporous Mater 28:271–292. doi:10.1016/S1387-1811(98)00243-1

Voyles PM, Muller DA, Grazul JL, Citrin PH, Gossmann JL (2002) Atomic-scale imaging of individual dopant atoms and clusters in highly n-type bulk Si. Nature (London) 416:826–829. doi:10.1038/416826a

Wang ZW, Toikkanen O, Yin F, Li ZY, Quinn BM, Palmer RE (2010) Counting the atoms in supported, monolayer-protected gold clusters. J Am Chem Soc 132:2854–2855. doi:10.1021/ja909598g

Young NP, Li ZY, Chen Y, Palomba S, Di Vece M, Palmer RE (2008) Weighing supported nanoparticles: size-selected clusters as mass standards in nanometrology. Phys Rev Lett 101:246103. doi:10.1103/PhysRevLett.101.246103