Chemical carcinogens in non-enzymatic cytosine deamination: 3-isocyanatoacrylonitrile

Journal of Molecular Modeling - Tập 12 - Trang 731-737 - 2006
Rainer Glaser1, Hong Wu2, Francisca von Saint Paul1
1Department of Chemistry, University of Missouri-Columbia, Columbia, USA
2Department of Chemistry, University of Missouri–Columbia, Columbia, USA

Tóm tắt

Uracil has long been known as the main product of nitrosative cytosine deamination in aqueous solution. Recent mechanistic studies of cytosinediazonium ion suggest that the cation formed by its dediazoniation can ring-open to N-protonated (Z,s-cis)-3-isocyanatoacrylonitrile 7. Stereochemical preferences are discussed of the 3-isocyanatoacrylonitriles (Z,s-cis)-10, (E,s-cis)-11, (Z,s-trans)-12, and (E,s-trans)-13. The electronic structures of 7 and 10–13 have been analyzed and a rationale is provided for the thermodynamic preference for (Z,s-cis)-10. It is shown that s-cis/s-trans-interconversion occurs via C−N rotation–inversion paths with barriers below 3 kcal mol−1. The proton affinities of 3-isocyanatoacrylonitrile 10 and water are nearly identical and, thus, 3-isocyanatoacrylonitriles can and should be formed in aqueous media from 7 along with 3-aminoacrylonitriles 9. The results highlight the relevance of the chemistry of 3-isocyanatoacrylonitriles for the understanding of the chemical toxicology of nitrosation of the nucleobase cytosine.

Tài liệu tham khảo

(a) Wyszynski M, Gabbara S, Bhagwat AS (1994) Proc Natl Acad Sci USA 91:1574−1578 (b) Yebra MJ, Bhagwat AS (1995) Biochem 34:14752-14757 (c) Sharath AN, Weinhold E, Bhagwat A S (2000) Biochem 39:14611–14616 Marnett LJ (1996) Chem Res Toxicol 9:807–808 (a) Caulfield JL, Wishnok JS, Tannenbaum SR (1998) J Biol Chem 273:12689–12695 (b) Wink DA, Kasprzak KS, Maragos CM, Elespuru RK, Misra M, Dunams TM, Cebula TA, Koch WH, Andrews AW, Allen JS, Keefer LK (1991) Science 254:1001–1003 (a) Lindahl T (1974) Proc Natl Acad Sci USA 71:3649-3653 (b) Tye BK, Chien J, Lehman IR, Duncan BK, Warner HR (1978) Proc Natl Acad Sci USA 75:233–237 (c) Wallace SS (1988) Environ Mol Mutagen 12:431–477 (a) Bridges BA (1999) Science 284:62–63 (b) Sagher D, Strauss B (1983) Biochem 22:4518–4526 (c) Loeb LA, Cheng KC (1990) Mutat Res 238:297–304 (d) Duncan BK, Miller JH (1980) Nature 287:560–561 Suzuki T, Nakamura T, Yamada M, Ide H, Kanaori K, Tajima K, Morii T, Makino K (1999) Biochem 38:7151–7158 Wu Z, Glaser R (2004) J Am Chem Soc 126:10632–10639 Glaser R, Rayat S, Lewis M, Son M-S, Meyer S (1999) J Am Chem Soc 121:6108–6119 Rayat S (2003) Dissertation, University of Missouri-Columbia Raspoet G, Nguyen MT, McGarraghy M, Hegarty AF (1998) J Org Chem 63:6867–6877 (a) Satchell DPN, Satchell RS (1975) Chem Soc Rev 4:231–250 (b) Saunders JH, Frisch KC (1962) Polyurethanes, chemistry and technology. Interscience, New York Yamamoto T, Hirasawa S, Muraoka M (1985) Bull Chem Soc Jpn 58:771–772 (a) Alberola A, Antolin LF, Gonzalez AM, Laguna MA, Pulido F (1986) J Heterocyclic Chem 23:1035–1038 (b) Cocco MT, Congiu C, Onnis V (1995) J Heterocyclic Chem 32:1679–1682 Wu H, Glaser R (2005) Chem Res Toxicol 18:111–114 (a) Nakashima K, Takeshita T, Morimoto K (2002) Env Health and Prevent Med 7:1–6 (b) Karol MH, Jin R (1991) Chem Res Tox 4:503–509 (a) Trembley P, Lesagem J, Ostiguy C, Van Tra H (2003) Analyst 128:142–149 (b) Schwetlick K, Noack R, Stebner F (1994) J Chem Soc Perkin Trans 2 3:599–608 Tiger RP, Levina MA, Entelis SG, Andreev MA (2002) Kinetics & Catalysis 43:662–666 Hehre WJ, Radom L, Schleyer PvR, Pople JA (1986) Ab initio molecular orbital theory. Wiley, New York Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery JA, Vreven Jr T, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyata K, Fukuya R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Stain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Gonzalez C, Pople JA (2003) Gaussian 03. Gaussian Inc, Pittsburgh, PA Rayat S, Glaser R (2003) J Org Chem 68:9882–9892 (a) Foster JP, Weinhold F (1980) J Am Chem Soc 102:7211–7218 (b) Reed AE, Weinhold F (1983) J Chem Phys 78:4066–4073 (c) Reed AE, Curtiss LA, Weinhold F (1988) Chem Rev 88:899–926 Weinhold F, Landis CR (2005) Valency and bonding—a natural bond orbital donor–acceptor perspective. Cambridge University Press, Cambridge, UK Badawi HM, Förner W, Al-Saadi AJ (2001) Mol Struct (Theochem) 535:183–197 Badawi HM, Förner W, Abu-Sharkh BF, Olorigebe YS (2002) J Mol Model 8:44–49 (a) Glaser R, Lewis M, Wu Z (2002) J Phys Chem A 106:7950–7957 (b) Glaser R, Wu Z, Lewis M (2000) J Mol Struct 556:131–141 Adamovic I, Gordon MS (2005) J Phys Chem A 109:1629–1636 (a) Glaser R, Horan CJ (1996) Can J Chem 74:1200–1214 (b) Glaser R, Horan C, Nelson E, Hall MK (1992) J Org Chem 57:215–228 (a) Mo Y, Wu W, Song L, Lin M, Zhang Q, Gao J (2004) Angew Chem Int Ed 43:1986–1990 (b) Mo Y, Jiao H, Schleyer PvR (2004) J Org Chem 69:3493–3499 (c) Mo Y, Schleyer PvR, Wu W, Lin M, Zhang Q, Gao J (2003) J Phys Chem A 107:10011–10018 Collyer SM, McMahon TB (1983) J Phys Chem 87:909–911 Rayat S, Wu Z, Glaser R (2004) Chem Res Toxicol 17:1157–1169 (a) Glaser R, Wu H, Lewis M (2005) J Am Chem Soc 127:7346–7358 (b) Glaser R, Lewis M (1999) Org Lett 1:273–276 Rayat S, Majumdar P, Tipton P, Glaser R (2004) J Am Chem Soc 126:9960–9969 (a) Qian M, Glaser R (2005) J Am Chem Soc 127:880–887 (b) Qian M, Glaser R (2004) J Am Chem Soc 126:2274–2275 Hodgen B, Rayat S, Glaser R (2003) Org Lett 5:4077–4080 Rayat S, Qian M, Glaser R (2005) Chem Res Toxicol 18:1211–1218 (a) Lewis M, Glaser R (2002) Chem Eur J 8:1934–1944 (b) Lewis M, Glaser R (1998) J Am Chem Soc 120:8541–8542