Chemical and ultrastructural changes in cotton cellulose induced by laundering and textile use

Anna Palmé1, Alexander Idström2, Lars Nordstierna2, Harald Brelid3
1Division of Forest Products and Chemical Engineering, Department of Chemical and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden
2Division of Applied Surface Chemistry, Department of Chemical and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden
3Södra Innovation, Väröbacka, Sweden

Tóm tắt

Từ khóa


Tài liệu tham khảo

Ahn K, Rosenau T, Potthast A (2013) The influence of alkaline reserve on the aging behavior of book papers. Cellulose 20(4):1989–2001. doi: 10.1007/s10570-013-9978-3

Atalla RH, VanderHart DL (1999) The role of solid state 13C NMR spectroscopy in studies of the nature of native celluloses. Solid State Nucl Magn Reson 15(1):1–19. doi: 10.1016/S0926-2040(99)00042-9

Buisson YL, Rajasekaran K, French AD, Conrad DC, Roy PS (2000) Qualitative and quantitative evaluation of cotton fabric damage by tumble drying. Text Res J 70(8):739–743. doi: 10.1177/004051750007000813

Chunilall V, Bush T, Larsson PT, Iversen T, Kindness A (2010) A CP/MAS (13)C-NMR study of cellulose fibril aggregation in eucalyptus dissolving pulps during drying and the correlation between aggregate dimensions and chemical reactivity. Holzforschung 64(6):693–698. doi: 10.1515/hf.2010.097

Davidson GF (1948) The acidic properties of cotton cellulose and derived oxycelluloses. Part II. The absorption of methylene blue. J Tex Inst Trans 39(3):T65–T86. doi: 10.1080/19447024808659403

Fardim P, Holmbom B, Ivaska A, Karhu J, Mortha G, Laine J (2002) Critical comparison and validation of methods for determination of anionic groups in pulp fibres. Nord Pulp Paper Res J 17(3):346–351

Franzon O, Samuelson O (1957) Degradation of cellulose by alkali cooking. Svensk Papperstidning 60(23):872–877

Goynes WR, Rollins ML (1971) A scanning electron-microscope study of washer-dryer abrasion in cotton fibers. Text Res J 41(3):226–231. doi: 10.1177/004051757104100307

Haselton WR (1955) Gas adsorption by wood, pulp, and paper. II. The application of gas-adsorption techniques to the study of the area and structure of pulps and the unbonded and bonded area of paper. Tappi 38:716–723

Henniges U, Kostic M, Borgards A, Rosenau T, Potthast A (2011) Dissolution behavior of different celluloses. Biomacromolecules 12(4):871–879. doi: 10.1021/bm101555q

Hubbe MA, Venditti RA, Rojas OJ (2007) What happens to cellulosic fibres during papersmaking and recycling? A review. BioResources 2(4):739–788

Hult E-L, Larsson PT, Iversen T (2001) Cellulose fibril aggregation—an inherent property of kraft pulps. Polymer 42(8):3309–3314

Idström A, Brelid H, Nydén M, Nordstierna L (2013) CP/MAS 13C NMR study of pulp hornification using nanocrystalline cellulose as a model system. Carbohydr Polym 92(1):881–884. doi: 10.1016/j.carbpol.2012.09.097

Jayme G (1944) Mikro-Quellungsmessungen an Zellstoffen. Papierfabrikant-Wochenblatt fuer Papierfabrikation 6:187–194

Kato KL, Cameron RE (1999) A review of the relationship between thermally-accelerated ageing of paper and hornification. Cellulose 6(1):23–40. doi: 10.1023/a:1009292120151

Kleman-Leyer K, Agosin E, Conner AH, Kirk TK (1992) Changes in molecular size distribution of cellulose during attack by white rot and brown rot fungi. Appl Environ Microbiol 58(4):1266–1270

Knill CJ, Kennedy JF (2003) Degradation of cellulose under alkaline conditions. Carbohydr Polym 51(3):281–300. doi: 10.1016/S0144-8617(02)00183-2

Köhnke T, Lund K, Brelid H, Westman G (2010) Kraft pulp hornification: a closer look at the preventive effect gained by glucuronoxylan adsorption. Carbohydr Polym 81(2):226–233. doi: 10.1016/j.carbpol.2010.02.023

Laivins GV, Scallan AM (1993) The mechanism of hornification of wood pulps. In: Baker CF (ed) Products of papermaking. Transactions of the 10th fundamental research symposium. Pira International, Oxford, pp 1235–1260

Lindholm C-A (1992) Alkaline extraction of ozone-bleached pulp Part 2. Effect of leachable lignin. Nord Pulp Pap Res J 07(2):095–101. doi: 10.3183/NPPRJ-1992-07-02-p095-101

Loon LR, Glaus MA (1997) Review of the kinetics of alkaline degradation of cellulose in view of its relevance for safety assessment of radioactive waste repositories. J Environ Polym Degr 5(2):97–109. doi: 10.1007/bf02763593

Morley N, Slater S, Russell S, Tipper M, Ward GD (2006) Recycling of low grade clothing waste. Oakdene Hollins Ltd, Salvation Army Trading Company Ltd. Nonwovens Innovation & Research Institute Ltd. http://www.oakdenehollins.co.uk/pdf/defr01_058_low_grade_clothing-public_v2.pdf . Accessed 14 Sept 2014

Negulescu II, Kwon H, Collier BJ, Collier JR, Pendse A (1998) Recycling cotton from cotton/polyester fabrics. Text Chem Color 30(6):31–35

Nelson R, Oliver DW (1971) Study of cellulose structure and its relation to reactivity. J Polym Sci Part C Polym Symp 36(1):305–320. doi: 10.1002/polc.5070360122

Nelson ML, Rousselle MA, Ramey HH Jr, Barker GL (1980) Closed-boll cotton. Part I. Properties of never-dried cotton fibers before and after aqueous formaldehyde treatment. Text Res J 50:491–499. doi: 10.1177/004051758005000804

Newman RH (1999) Estimation of the lateral dimensions of cellulose crystallites using 13C NMR signal strengths. Solid State Nucl Magn Reson 15(1):21–29. doi: 10.1016/S0926-2040(99)00043-0

Newman R (2004) Carbon-13 NMR evidence for cocrystallization of cellulose as a mechanism for hornification of bleached kraft pulp. Cellulose 11(1):45–52. doi: 10.1023/B:CELL.0000014768.28924.0c

Palm D (2011) Improved waste management of textiles. IVL Swedish environmental institute. http://ivl.se/download/18.7df4c4e812d2da6a416800080103/1350484286532/B1976.pdf . Accessed 14 Sept 2014

Park S, Baker J, Himmel M, Parilla P, Johnson D (2010) Cellulose crystallinity index: measurement techniques and their impact on interpreting cellulase performance. Biotechnol Biofuels 3(1):10

Pönni R, Vuorinen T, Kontturi E (2012) Proposed nano-scale coalescence of cellulose in chemical pulp fibers during technical treatments. BioResources 7(4):6077–6108

Porter BR, Rollins ML (1972) Changes in porosity of treated lint cotton fibers. I. Purification and swelling treatments. J Appl Polym Sci 16(1):217–236. doi: 10.1002/app.1972.070160119

Sugiyama J, Vuong R, Chanzy H (1991) Electron diffraction study on the two crystalline phases occurring in native cellulose from an algal cell wall. Macromolecules 24(14):4168–4175

Timpa JD, Ramey HH (1989) Molecular characterization of three cotton varieties. Text Res J 59(11):661–664. doi: 10.1177/004051758905901105

Vaeck SV (1966) Chemical and mechanical wear of cotton fabric in laundering. J Soc Dyers Colour 82(10):374–379. doi: 10.1111/j.1478-4408.1966.tb02684.x

Virtanen T, Liisa Maunu S, Tamminen T, Hortling B, Liitiä T (2008) Changes in fiber ultrastructure during various kraft pulping conditions evaluated by 13C CPMAS NMR spectroscopy. Carbohydr Polym 73(1):156–163. doi: 10.1016/j.carbpol.2007.11.015

Wakelyn PJ, Bertoniere NR, French AD, Thibodeaux DP, Triplett BA, Rousselle M-A, Goynes WR Jr, Edwards JV, Hunter L, McAlister DD, Gamble GR (2007) Cotton fibers. In: Menachem L (ed) Handbook of fibre chemistry, 3rd edn. Taylor & Francis Group, Boca Raton, pp 521–666

Wang XS, Maloney TC, Paulapuro H (2003) Internal fibrillation in never-dried and once-dried chemical pulps. Appita J 56(6):455–459

Weise U (1998) Hornification: mechanisms and terminology. Pap Ja Puu-Pap Timber 80(2):110–115

Wickholm K (2001) Structural elements in native cellulose. Dissertation, Royal Institute of Technology

Wickholm K, Larsson PT, Iversen T (1998) Assignment of non-crystalline forms in cellulose I by CP/MAS C-13 NMR spectroscopy. Carbohydr Res 312(3):123–129. doi: 10.1016/s0008-6215(98)00236-5

Wilson WK, Parks EJ (1979) An analysis of the aging of paper: possible reactions and their effects on measurable properties. Restaurator 3:37–61. doi: 10.1515/rest.1979.3.1-2.37

Woodings C (2001) Regenerated cellulose fibres. Woodhead Publishing in association with the Textile Institute, Cambridge