Chemical and ultrastructural changes in cotton cellulose induced by laundering and textile use
Tóm tắt
Từ khóa
Tài liệu tham khảo
Ahn K, Rosenau T, Potthast A (2013) The influence of alkaline reserve on the aging behavior of book papers. Cellulose 20(4):1989–2001. doi: 10.1007/s10570-013-9978-3
Atalla RH, VanderHart DL (1999) The role of solid state 13C NMR spectroscopy in studies of the nature of native celluloses. Solid State Nucl Magn Reson 15(1):1–19. doi: 10.1016/S0926-2040(99)00042-9
Buisson YL, Rajasekaran K, French AD, Conrad DC, Roy PS (2000) Qualitative and quantitative evaluation of cotton fabric damage by tumble drying. Text Res J 70(8):739–743. doi: 10.1177/004051750007000813
Chunilall V, Bush T, Larsson PT, Iversen T, Kindness A (2010) A CP/MAS (13)C-NMR study of cellulose fibril aggregation in eucalyptus dissolving pulps during drying and the correlation between aggregate dimensions and chemical reactivity. Holzforschung 64(6):693–698. doi: 10.1515/hf.2010.097
Davidson GF (1948) The acidic properties of cotton cellulose and derived oxycelluloses. Part II. The absorption of methylene blue. J Tex Inst Trans 39(3):T65–T86. doi: 10.1080/19447024808659403
Fardim P, Holmbom B, Ivaska A, Karhu J, Mortha G, Laine J (2002) Critical comparison and validation of methods for determination of anionic groups in pulp fibres. Nord Pulp Paper Res J 17(3):346–351
Franzon O, Samuelson O (1957) Degradation of cellulose by alkali cooking. Svensk Papperstidning 60(23):872–877
Goynes WR, Rollins ML (1971) A scanning electron-microscope study of washer-dryer abrasion in cotton fibers. Text Res J 41(3):226–231. doi: 10.1177/004051757104100307
Haselton WR (1955) Gas adsorption by wood, pulp, and paper. II. The application of gas-adsorption techniques to the study of the area and structure of pulps and the unbonded and bonded area of paper. Tappi 38:716–723
Henniges U, Kostic M, Borgards A, Rosenau T, Potthast A (2011) Dissolution behavior of different celluloses. Biomacromolecules 12(4):871–879. doi: 10.1021/bm101555q
Hubbe MA, Venditti RA, Rojas OJ (2007) What happens to cellulosic fibres during papersmaking and recycling? A review. BioResources 2(4):739–788
Hult E-L, Larsson PT, Iversen T (2001) Cellulose fibril aggregation—an inherent property of kraft pulps. Polymer 42(8):3309–3314
Idström A, Brelid H, Nydén M, Nordstierna L (2013) CP/MAS 13C NMR study of pulp hornification using nanocrystalline cellulose as a model system. Carbohydr Polym 92(1):881–884. doi: 10.1016/j.carbpol.2012.09.097
Jayme G (1944) Mikro-Quellungsmessungen an Zellstoffen. Papierfabrikant-Wochenblatt fuer Papierfabrikation 6:187–194
Kato KL, Cameron RE (1999) A review of the relationship between thermally-accelerated ageing of paper and hornification. Cellulose 6(1):23–40. doi: 10.1023/a:1009292120151
Kleman-Leyer K, Agosin E, Conner AH, Kirk TK (1992) Changes in molecular size distribution of cellulose during attack by white rot and brown rot fungi. Appl Environ Microbiol 58(4):1266–1270
Knill CJ, Kennedy JF (2003) Degradation of cellulose under alkaline conditions. Carbohydr Polym 51(3):281–300. doi: 10.1016/S0144-8617(02)00183-2
Köhnke T, Lund K, Brelid H, Westman G (2010) Kraft pulp hornification: a closer look at the preventive effect gained by glucuronoxylan adsorption. Carbohydr Polym 81(2):226–233. doi: 10.1016/j.carbpol.2010.02.023
Laivins GV, Scallan AM (1993) The mechanism of hornification of wood pulps. In: Baker CF (ed) Products of papermaking. Transactions of the 10th fundamental research symposium. Pira International, Oxford, pp 1235–1260
Lindholm C-A (1992) Alkaline extraction of ozone-bleached pulp Part 2. Effect of leachable lignin. Nord Pulp Pap Res J 07(2):095–101. doi: 10.3183/NPPRJ-1992-07-02-p095-101
Loon LR, Glaus MA (1997) Review of the kinetics of alkaline degradation of cellulose in view of its relevance for safety assessment of radioactive waste repositories. J Environ Polym Degr 5(2):97–109. doi: 10.1007/bf02763593
Morley N, Slater S, Russell S, Tipper M, Ward GD (2006) Recycling of low grade clothing waste. Oakdene Hollins Ltd, Salvation Army Trading Company Ltd. Nonwovens Innovation & Research Institute Ltd. http://www.oakdenehollins.co.uk/pdf/defr01_058_low_grade_clothing-public_v2.pdf . Accessed 14 Sept 2014
Negulescu II, Kwon H, Collier BJ, Collier JR, Pendse A (1998) Recycling cotton from cotton/polyester fabrics. Text Chem Color 30(6):31–35
Nelson R, Oliver DW (1971) Study of cellulose structure and its relation to reactivity. J Polym Sci Part C Polym Symp 36(1):305–320. doi: 10.1002/polc.5070360122
Nelson ML, Rousselle MA, Ramey HH Jr, Barker GL (1980) Closed-boll cotton. Part I. Properties of never-dried cotton fibers before and after aqueous formaldehyde treatment. Text Res J 50:491–499. doi: 10.1177/004051758005000804
Newman RH (1999) Estimation of the lateral dimensions of cellulose crystallites using 13C NMR signal strengths. Solid State Nucl Magn Reson 15(1):21–29. doi: 10.1016/S0926-2040(99)00043-0
Newman R (2004) Carbon-13 NMR evidence for cocrystallization of cellulose as a mechanism for hornification of bleached kraft pulp. Cellulose 11(1):45–52. doi: 10.1023/B:CELL.0000014768.28924.0c
Palm D (2011) Improved waste management of textiles. IVL Swedish environmental institute. http://ivl.se/download/18.7df4c4e812d2da6a416800080103/1350484286532/B1976.pdf . Accessed 14 Sept 2014
Park S, Baker J, Himmel M, Parilla P, Johnson D (2010) Cellulose crystallinity index: measurement techniques and their impact on interpreting cellulase performance. Biotechnol Biofuels 3(1):10
Pönni R, Vuorinen T, Kontturi E (2012) Proposed nano-scale coalescence of cellulose in chemical pulp fibers during technical treatments. BioResources 7(4):6077–6108
Porter BR, Rollins ML (1972) Changes in porosity of treated lint cotton fibers. I. Purification and swelling treatments. J Appl Polym Sci 16(1):217–236. doi: 10.1002/app.1972.070160119
Sugiyama J, Vuong R, Chanzy H (1991) Electron diffraction study on the two crystalline phases occurring in native cellulose from an algal cell wall. Macromolecules 24(14):4168–4175
Timpa JD, Ramey HH (1989) Molecular characterization of three cotton varieties. Text Res J 59(11):661–664. doi: 10.1177/004051758905901105
Vaeck SV (1966) Chemical and mechanical wear of cotton fabric in laundering. J Soc Dyers Colour 82(10):374–379. doi: 10.1111/j.1478-4408.1966.tb02684.x
Virtanen T, Liisa Maunu S, Tamminen T, Hortling B, Liitiä T (2008) Changes in fiber ultrastructure during various kraft pulping conditions evaluated by 13C CPMAS NMR spectroscopy. Carbohydr Polym 73(1):156–163. doi: 10.1016/j.carbpol.2007.11.015
Wakelyn PJ, Bertoniere NR, French AD, Thibodeaux DP, Triplett BA, Rousselle M-A, Goynes WR Jr, Edwards JV, Hunter L, McAlister DD, Gamble GR (2007) Cotton fibers. In: Menachem L (ed) Handbook of fibre chemistry, 3rd edn. Taylor & Francis Group, Boca Raton, pp 521–666
Wang XS, Maloney TC, Paulapuro H (2003) Internal fibrillation in never-dried and once-dried chemical pulps. Appita J 56(6):455–459
Weise U (1998) Hornification: mechanisms and terminology. Pap Ja Puu-Pap Timber 80(2):110–115
Wickholm K (2001) Structural elements in native cellulose. Dissertation, Royal Institute of Technology
Wickholm K, Larsson PT, Iversen T (1998) Assignment of non-crystalline forms in cellulose I by CP/MAS C-13 NMR spectroscopy. Carbohydr Res 312(3):123–129. doi: 10.1016/s0008-6215(98)00236-5
Wilson WK, Parks EJ (1979) An analysis of the aging of paper: possible reactions and their effects on measurable properties. Restaurator 3:37–61. doi: 10.1515/rest.1979.3.1-2.37