Thay đổi hóa học và vi sinh vật trong quá trình vermicomposting bã cà phê sử dụng loài giun đất ngoại lai (Eudrilus eugeniae) và nội địa (Perionyx ceylanesis)

Biodegradation - Tập 22 - Trang 497-507 - 2010
Kurian Raphael1, K. Velmourougane2
1Coffee Research Sub Station, Chettalli, North Kodagu, India
2Central Institute for Cotton Research, Indian Council of Agricultural Research, Nagpur, India

Tóm tắt

Bã cà phê là chất thải rắn chính từ quá trình chế biến ướt quả cà phê. Do sự hiện diện của các yếu tố chống sinh lý và chống dinh dưỡng, bã cà phê không được coi là cơ chất thích hợp cho quá trình biến đổi sinh học bởi các nông dân trồng cà phê. Các biện pháp nghiêm ngặt gần đây từ các cơ quan kiểm soát ô nhiễm đã buộc phải xử lý tất cả các chất thải rắn và lỏng phát sinh từ các trang trại cà phê. Một nghiên cứu đã được tiến hành để đánh giá hiệu quả của một loài giun đất ngoại lai (Eudrilus eugeniae) và một loài giun đất nội địa (Perionyx ceylanesis) từ trang trại cà phê trong việc phân hủy bã cà phê thành vermicompost có giá trị. Giun đất ngoại lai được phát hiện là phân hủy bã cà phê nhanh hơn (112 ngày) so với giun đất nội địa (165 ngày) và hiệu suất vermicomposting (77,9%) cùng với sản lượng vermicompost (389 kg) được ghi nhận cao hơn đáng kể với giun đất nội địa. Tỷ lệ sinh sản của giun đất (280%) và sản lượng giun (3,78 kg) được ghi nhận cao hơn đáng kể với giun đất ngoại lai. Tỷ lệ phần trăm nitơ, photpho, kali, canxi và magiê trong vermicompost được phát hiện là tăng lên trong khi tỷ lệ C:N, pH và carbon hữu cơ tổng số giảm xuống như một chức năng của quá trình vermicomposting. Các chất dinh dưỡng thực vật, nitơ (80,6%), photpho (292%) và hàm lượng kali (550%) được phát hiện tăng lên đáng kể trong vermicompost sản xuất bằng cách sử dụng giun đất nội địa so với các giá trị ban đầu, trong khi hàm lượng canxi (85,7%) và magiê (210%) được phát hiện tăng lên đáng kể trong phân hữu cơ được sản xuất bằng cách sử dụng giun ngoại lai. Vermicompost và vermicasts từ giun đất nội địa ghi nhận số lượng quần thể nhóm vi sinh vật chức năng cao hơn đáng kể so với giun ngoại lai. Nghiên cứu cho thấy rằng bã cà phê có thể được sử dụng rất tốt làm cơ chất cho quá trình vermicomposting sử dụng giun đất ngoại lai (Eudrilus eugeniae) và giun đất nội địa (Perionyx ceylanesis).

Từ khóa


Tài liệu tham khảo

Adams M, Dougan J (1981) Biological management of coffee processing wastes. Trop Sci 23:177–197 Albanell E, Plaixats J, Cabrero T (1988) Chemical change during vermicomposting (Eisenia foetida) of sheep manure mixed with cotton industrial waste. Biol Fertil Soils 6(3):266–269 Allen ON (1959) Experiments in soil bacteriology, 3rd edn. Burgess, Minneapolis, p 117 Aranda E, Barois I (2000) Coffee pulp in vermicomposting treatment. In: Sera T, Soccol CR, Pandey A, Roussos S (eds) Coffee biotechnology and quality. Kluwer, Dordrecht, pp 489–506 ISBN 0-7923-6582-8 Atiyeh RM, Dominguez J, Subler S, Edwards CA (2000) Changes in biochemical properties of cow manure during processing by earthworms (Eisenia andrei Bouche) and the effects on seedling growth. Pedobiologia 44:709–724 Barnett HL (1960) Illustrated genera of imperfect fungi, 2nd edn. Burges, Minneapolis Becking JH (1959) Nitrogen fixing bacteria of the genus Beijerinckia in South African soils. Plant Soil 11:193–206 Benitez E, Saizn H, Melayar R, Nogales R (2002) Vermicomposting of a lignocellulosic waste from olive oil industry: a pilot scale study. Waste Manag Res 20:134–142 Bhawalkar US, Bhawalkar UV (1993) Vermiculture biotechnology. In: Thampan PK (ed) Organics in soil health, crop production. Peekay Tree Crops Development Foundation, Cochin, pp 65–85 Bray RH, Krutz LK (1945) Determination of total organic and available forms of phosphorous in soil. Soil Sci 59:39–45 Buchanam MA, Rusell E, Block SD (1988) Chemical characterization and nitrogen mineralization potentials of vermicompost derived from differing organic wastes. In: Edwards CA, Neuhauser EF (eds) Earthworms in environmental and waste management. SPB Academic, The Netherlands, pp 231–240 Chan PLS, Griffiths DA (1988) Chemical composting of pretreated pig manure. Biol Waste 24:57–69 Chaoui HI, Zibilske LM, Ohno T (2003) Effects of earthworm casts and compost on soil microbial activity and plant nutrient availability. Soil Biol Biochem 35:295–302 Crawford JH (1983) Review of composting. Process Biochem 18:14–15 Edwards CA (1988) Breakdown of animal, vegetable and industrial organic wastes by earthworms. In: Earthworms in waste and in environment. SPB Academic, The Hague, pp 21–31 Edwards CA, Bohlen PJ (1996) Biology and ecology of earthworms. Chapman and Hall, London Edwards CA, Burrows I (1998) The potential of earthworm compost as plant growth media. In: Edwards CA, Neuhauser E (eds) Earthworm in waste and environmental management. SPB Academic, The Netherlands, pp 21–32 Elvira C, Sampedro L, Benitez E, Nogales R (1998) Vermicomposting of sludges from paper mill and dairy industries with Eisenia andrei: a pilot scale study. Bioresour Technol 63:205–211 Gaur AC, Singh G (1995) Recycling of rural and urban waste through conventional and vermicomposting. In: Tondon HLS (ed) Recycling of crop, animal, human and industrial waste in agriculture. Fertilizer Development and Consultation Organization, New Delhi, pp 31–49 Gomez KA, Gomez AA (1984) Statistical procedures for agricultural research, 2nd edn. Wiley, NY, p 680 Gopal M, Gupta A, Sunil E, Thomas GV (2009) Amplification of plant beneficial microbial communities during conversion of coconut leaf substrate to vermicompost by Eudrilus sp. Curr Microbiol 59:15–20 Gunadi B, Edwards CA (2003) The effect of multiple applications of different organic wastes on the growth, fecundity and survival of Eisenia foetida (Savigny) (Lumbricidae). Pedobiologia 47(4):321–330 Haimi J, Hutha V (1986) Capacity of various organic residues to support adequate earthworm biomass in vermicomposting. Biol Fertil Soils 2:23–27 Hartenstein R, Hartenstein F (1981) Physicochemical changes in activated sludge by the earthworm Eisenia foetida. J Environ Qual 10:377–382 Holt JG, Krieg NR, Sneath PHA, Staley JT, Williams ST (1994) Bergey’s manual of determinative bacteriology, 9th edn. Williams & Wilkins, Baltimore, pp 529–543, 566 Ismail SA (2000) Organic waste management. In: Technology appreciation programme on evaluation of biotechnological approaches to waste management held on 26th October 2000. Industrial Association-ship of IIT, Madras, pp 28–30 Jackson ML (1973) Soil chemical analysis. Prentice Hall of India, New Delhi, pp 111–204 Kale RD, Bano K, Sreenivasa MN, Bhagyaraj DJ (1987) Influence of worm cast (Vee Comp. E. UAS, 1983) on the growth and mycorrhizal colonization of two ornamental plants. South Indian Hortic 35:433–437 Kale RD, Mallesh BC, Bano K, Bagyaraj DJ (1992) Influence of vermicompost application on the available macronutrients and selected microbial population in a paddy field. Soil Biol Biochem 24:1317–1320 Kaushik P, Garg VK (2004) Dynamics of biological and chemical parameters during vermicomposting of solid textile mill sludge mixed with cowdung and agricultural residues. Bioresour Technol 94:203–209 King EO, Ward MN, Raney DE (1954) Two simple media for the demonstration of pyocyanin and fluorescein. J Lab Clin Med 44:301–307 Klich MA, Pitt JI (1992) A laboratory guide to common Aspergillus species and their Teleomorphs. Commonwealth Scientific and Industrial Research Organization, Australia Kristufek V, Ravasz K, Pizl V (1992) Changes in densities of bacteria and microfungi during gut transit in Lumbricus rubellus and Aporrectodea calignosa (Oligochaeta: Lumbricidae). Soil Biol Biochem 24:1499–1500 Lavelle P, Martin A (1992) Small-scale and large-scale effects of endogeic earthworms on soil organic matter dynamics in soils of the humic-tropics. Soil Biol Biochem 24(12):1491–1498 Lavelle P, Decaens T, Aubert M, Barot S, Blouin M, Bureau F, Margerie P, Mora P, Rossi JP (2006) Soil invertebrates and ecosystem services. Eur J Soil Biol 42:3–15 Mansell GP, Syers JK, Gregg PEH (1981) Plant availability of phosphorous in dead herbage ingested by surface-casting earthworms. Soil Biol Biochem 13:163–167 Marnyye A, Vela′zquez-Ceden˜, Gerardo M, Jean-Michel S (2002) Waste-reducing cultivation of Pleurotus ostreatus and Pleurotus pulmonarius on coffee pulp: changes in the production of some lignocellulolytic enzymes. World J Microbiol Biotechnol 18:201–207 Martin JP (1950) Use of acid, rose Bengal and streptomycin in the plate method for estimating soil fungi. Soil Sci 69:215–232 Mitchell A (1997) Production of Eisenia foetida and vermicompost from feedlot cattle manure. Soil Biol Biochem 29:763–766 Muralidhara HR, Biradar IB, Manonmani GK, Velmourougane K, Bhat Sudhakar S (2006) Enhancement of composting the cherry husk for value added organic manure production in coffee plantations J. Coffee Res 34(1&2):19–33 Nagaraja JS, Shanmukappa DR, Velmourougane K, Panneerselvam P, Alwar RPA (2000) Production of compost from coffee pulp. Proceedings on recent advances in plantation crops research, pp 121–124. Nedgwa PM, Thompson SA (2000) Effects of C-to-N ratio on vermicomposting of biosolids. Bioresour Technol. 75:7–12 Nedgwa PM, Thompson SA, Das KC (2000) Effects of stocking density and feeding rate on vermicomposting of biosolids. Bioresour Technol 71:5–12 Nogales R, Cifuentes C, Benitez E (2005) Vermicomposting of winery waste: a laboratory study. J Environ Sci Health B 40:659–673 Orozco FH, Cegarra J, Trujillo LM, Roig A (1996) Vermicomposting of coffee pulp using the earthworm Eisenia fetida: effects on C and N contents and the availability of nutrients. Biol Fertil Soils 22:162–166 Page AL, Miller RH, Keeney DR (eds) (1982) Methods of soil analysis-Part-2-chemical and microbiological properties. American Society of Agronomy, Madison Paoletti MG (1999) The role of earthworms for assessment of sustainability and as bioindicators. Agric Ecosyst Environ 74:137–155 Pedersen JC, Hendriksen NB (1993) Effect of passage through the intestinal tract of detrivore earthworms (Lumbricus spp.) on the number of selected gram-negative and total bacteria. Biol Fertil Soils 16:227–232 Pikovskaya RI (1948) Mobilization of phosphorus in soil in connection with vital activity of some soil microbial species. Mikrobiologiya 17:362–370 Pulgarin C, Schwitzguebel J, Tabacchi R (1991) Comment blancher les residus du cafe noir? Biofutur 102:43–50 Rolz C, Menchu J, Calzada F, de Leon R, Garcıa R (1982) Biotechnology in washed coffee processing. Process Biochem 17(8–10):22 Satchell JE, Martein K (1984) Phosphate activity in earthworm faeces. Soil Biol Biochem 16:191–194 Senapati BK (1999) In-soil earthworm technologies for tropical agro ecosystems. In: Lavelle P, Brussaard L, Hendrix P (eds) Earthworm management in tropical agroecosystems. CABI, New York, pp 199–237 Singh R, Pradhan K (1981) Determination of nitrogen and protein by Khjeldahl method. In: Forage evaluation science. Pvt. Publishers Ltd., New Delhi, p 23 Subler S, Edwards CA, Metzger J (1998) Comparing vermicomposts and composts. Biocycle 39:63–66 Suthar S (2006) Potential utilization of guargum industrial waste in vermicompost production. Bioresour Technol 97:2474–2477 Suthar S (2007) Production of vermifertilizer from guar gum industrial wastes by using composting earthworm Perionyx sansibaricus (Perrier). Environmentalist 27:329–335 Syers JK, Springett JA (1984) Earthworm and soil fertility. Plant Soil 76:93–104 Tripathi G, Bhardwaj P (2004) Comparative studies on biomass production life cycles and composting efficiency of Eisenia foetida (Savigny) and Lampito mauritii (Kinberg). Bioresour Technol 92:275–283 Viel M, Sayag D, Andre L (1987) Optimization of agricultural, industrial waste management through in-vessel composting. In: de Bertoldi M (ed) Compost: production, quality and use. Elsevier Applied Science, Essex, pp 230–237 Walkley A, Black IA (1934) Chromic acid titration for determination of soil organic matter. Soil Sci 63:251 Watanabe T (1994) Pictorial atlas of soil and seed fungi, morphologies of cultured fungi and key to species. CRC Press, Lewis Publishers Inc, NY