Chemical and Topographical Surface Modification for Control of Central Nervous System Cell Adhesion

Springer Science and Business Media LLC - Tập 1 - Trang 49-64 - 1998
H. G. Craighead1, S. W. Turner1, R. C. Davis1, C. James1, A. M. Perez1, P. M. St. John1, M. S. Isaacson1, L. Kam2, W. Shain2, J. N. Turner2, G. Banker2
1School of Applied and Engineering Physics, Clark Hall, Cornell University, Ithaca, USA
2Wadsworth Center, N Y State Dept. of Health and Dept. of Biomedical Science, School of Public Health, Albany, USA

Tóm tắt

We describe methods of fine scale chemical and topographical patterning of silicon substrates and the selected attachment and growth of central nervous system cells in culture. We have used lithography and microcontact printing to pattern surfaces with self-assembled monolayers and proteins. Chemical patterns can be created that localize and guide the growth of cells on the surfaces. Self-assembled surface texturing with structures at the tens of nanometers scale and lithographic based methods at the micrometer scale have been used to produce a variety of surface topographical features. These experiments suggest that surface texture at the scale of tens of nanometers to micrometers can influence the attachment of these cells to a surface and can be used as a mechanism of isolating cells to a particular area on a silicon substrate.

Tài liệu tham khảo

G. Banker and K. Goslin, Culturing Nerve Cells (MIT Press, Cambridge, 1991). J.E. Bottenstein, Methods for Serum-Free Culture of Neuronal and Lymphoid Cells (Alan R. Liss, New York, 1984). D.A. Borkholder, J. Bao, N.I Maluf, E.R. Perl, and G.T.A. Kovacs, J. Neurosci. Meth. 77, 61 (1997). P. Clark, P. Connolly, A.S.G. Curtis, J.A.T. Dow, and C.D.W. Wilkinson, Development 108, 635 (1990). H.G. Coon, In Vitro. Proc. Nat. Acad. Sci. (USA) 55, 66–73 (1966). F.T. Chen and H.G. Craighead, Optics Letters, 20, 121–123 (1995). H.G. Craighead and R.E. Howard, Appl. Phys. Lett. 39, 532 (1981). H.G. Craighead, R.E. Howard, J.E. Sweeney, and D. M. Tennant, J. Vac. Sci. Technol. 20, 316 (1982). M.I. Davis-Cox, J.N. Turner, D. Szarowski, and W. Shain, Microscopy Res. Tech. 29, 319 (1994). R.C. Davis, C.D. James, H.G. Craighead, M. Isaacson, and G. Banker, (in preparation). T.A. Desai, W.H. Chu, J.K. Tu, G.M. Beattie, A. Hayek, and M. Ferrari, Biotechnology and Bioengineering 57, 118 (1998). N. Dontha, W.B. Nowall, and W.G. Kuhr,. Analytical Chemistry 69, 2619 (1997). M. Ferrari, W.H. Chu, T. Desai, D. Hansford, G. Mazzoni, and M. Zhang, MRS Proc. 414, 101 (1996). C.D. James, R.C. Davis, L. Kam, H.G. Craighead, M. Isaacson, J.N. Turner, and W. Shain, Langmuir 14, 741 (1998). C.E. Jordan, B.L. Frey, S. Kornguth, and R.M. Corn, Langmuir 10, 3642 (1994). J.F. Hetke, J.L. Lund, K. Najafi, K.D. Wise, and D.J. Anderson, IEEE Trans. on Biomed. Eng. 41, 314 (1994). D. Kleinfeld, K.H. Kahler, and P.E. Hockberger, J. Neurosci. 8, 4098 (1988). A. Kumar and G.M. Whitesides, Appl. Phys. Lett. 63, 2002 (1993). A. Kumar, H.A. Biebuyck, and G.M. Whitesides, Langmuir 10, 1498 (1994). D.L. Martin and W. Shain, J. Biol Chem 254, 7076 (1979). E.P. Pleuddmann, Silane Coupling Agents (Plenum, New York, 1982). P.M. St. John, H.G. Craighead, Appl. Phys. Lett. 68, 1022 (1996). P.M. St. John, L. Kam, H.G. Craighead, M. Issacson, W. Shain, D. Szarowski, S. Turner, and J.N. Turner, J. Neurosci. Meth. 75, 171 (1997). P.M. St. John, R.C. Davis, N. Cady, J. Czajka, C.A. Batt, and H.G. Craighead, Analytical Chem. 70, 1108 (1998). S. Turner, L. Kam, M. Isaacson, H.G. Craighead, D. Szarowski, J.N. Turner and W. Shain, Proc. SPIE 2978, 41–48 (1997). Y. Xia, M. Mrksich, E. Kim, and G.M. Whitesides, J. Am. Chem. Soc. 117, 9576 (1995).