Chemical Sensors Based on Cyclodextrin Derivatives
Tóm tắt
Từ khóa
Tài liệu tham khảo
Szejtli, S. (1998). Cyclodextrin technology, Kluwer Academic Publishers.
Szejtli, J., and Osa, T. (1996). Comprehensive cyclodextrin chemistry, Pergmon.
Nepogodiev, 1998, Cyclodextrin-based catenanes and rotaxanes, Chem. Rev., 98, 1959, 10.1021/cr970049w
Khan, 1998, Methods for selective modifications of cyclodextrins, Chem. Rev., 98, 1977, 10.1021/cr970012b
Rekharsky, 1998, Complexation thermodynamics of cyclodextrins, Chem. Rev., 98, 1875, 10.1021/cr970015o
Connors, 1997, The stability of cyclodextrin complexes in solution, Chem. Rev., 97, 1325, 10.1021/cr960371r
Armspach, 1993, The self-assembly of catenated cyclodextrins, Angew. Chem. Int. Ed., 32, 854, 10.1002/anie.199308541
Ogino, 1981, Relatively high-yield syntheses of rotaxanes. Syntheses and properties of compounds consisting of cyclodextrins threaded by α,ω-diaminoalkanes coordinated to cobalt(III) complexes, J. Am. Chem. Soc., 103, 1303, 10.1021/ja00395a091
Ogino, 1984, Synthesis and properties of rotaxane complexes. [2]Rotaxanes consisting of α-or β-cyclodextrin threaded by (μ-α,ω-diaminoalkane)bis[chlorobis(ethylenediamine)cobalt(III)] complexes, Inorg. Chem., 23, 3312, 10.1021/ic00189a009
Isnin, 1992, Self-assembling metal rotaxane complexes of α-cyclodextrin, J. Am. Chem. Soc., 114, 3136, 10.1021/ja00034a069
Isnin, 1991, Novel class of asymmetric zwitterionic rotaxanes based on α-cyclodextrin, J. Am. Chem. Soc, 113, 8188, 10.1021/ja00021a067
Harada, A., Li, J., and Kamachi, M. (1997). Non-ionic [2]rotaxanes containing methylated α-cyclodextrins. Chem. Commun., 1413–1414.
Harada, 1992, The molecular necklace: a rotaxane containing many threaded α-cyclodextrins, Nature, 356, 325, 10.1038/356325a0
Harada, 1993, Synthesis of a tubular polymer from threaded cyclodextrins, Nature, 364, 516, 10.1038/364516a0
Kuad, 2007, External stimulus-responsive supramolecular structures formed by a stilbene cyclodextrin dimer, J. Am. Chem. Soc., 129, 12630, 10.1021/ja075139p
Harada, 2006, Supramolecular polymers based on cyclodextrins, J. Polym. Sci. A. Polym. Chem., 44, 5113, 10.1002/pola.21618
Thomas, 2007, Chemical sensors based on amplifying fluorescent conjugated polymers, Chem. Rev., 107, 1339, 10.1021/cr0501339
Sherigara, 2003, Electrocatalytic properties and sensor applications of fullerenes and carbon nanotubes, Electroanalysis, 15, 753, 10.1002/elan.200390094
Bonifazi, 2007, Supramolecular [60]fullerene chemistry on surfaces, Chem. Soc. Rev., 36, 390, 10.1039/B604308A
Murphy, C.J., Gole, A.M., Hunyadi, S.E., Stone, J.W., Sisco, P.N., Alkilany, A., Kinard, B.E., and Hankins, P. (2008). Chemical sensing and imaging with metallic nanorods. Chem. Commun., 544–557.
Ueno, A., Minato, S., Suzuki, I., Fukushima, M., Ohkubo, M., Osa, T., Hamada, F., and Murai, K. (1990). Host–guest sensory system of dansyl-modified β-cyclodextrin for detecting steroidal compounds by dansyl fluorescence. Chem. Lett., 605–608.
Hamada, 1993, Dansyl-modified γ-cyclodextrin as a fluorescent sensor for molecular recognition, J. Incl. Phenom., 15, 273, 10.1007/BF00709072
Wang, Y., Ikeda, T., Ueno, A., and Toda, F. (1992). Syntheses and molecular recognition abilities of 6-O-, 2-O-, and 3-O-dansyl-γ-cyclodextrins. Chem. Lett., 863–866.
Wang, 1994, Dansyl-β-cyclodextrins as fluorescent sensors responsive to organic compounds, Bull. Chem. Soc. Jpn., 67, 1598, 10.1246/bcsj.67.1598
Corradini, 1996, A modified cyclodextrin with a fully encapsulated dansyl group: self-inclusion in the solid state and in solution, Chem. Eur. J., 2, 373, 10.1002/chem.19960020404
Pagliari, 2004, Enaitioselective fluorescence sensing of amino acids by modified cyclodextrins: role of the cavity and sensing mechanism, Chem. Eur. J., 10, 2749, 10.1002/chem.200305448
Hamasaki, 1993, Fluorescent sensors of molecular recognition. Modified cyclodextrins capable of exhibiting guest-responsive twisted intramolecular charge transfer fluorescence, J. Am. Chem. Soc., 115, 5035, 10.1021/ja00065a012
Hamasaki, 1994, Molecular recognition indicators of modified cyclodextrins using twisted intramolecular charge transfer fluorescence, Bull. Chem. Soc. Jpn., 67, 516, 10.1246/bcsj.67.516
Hamasaki, K., Ueno, A., and Toda, F. (1993). A fluorescent α-cyclodextrin as a sensor for detecting aliphatic alcohols by dual fluorescence arising from normal planar and twisted intramolecular charge transfer excited states. J. Chem. Soc, Chem. Commun., 331–333.
Ueno, 1986, Fluorescence and circular dichroism studies on host-guest complexation of γ-cyclodextrin bearing two 2-naphthyl moieties, Bull. Chem. Soc. Jpn., 59, 465, 10.1246/bcsj.59.465
Ueno, 1992, Host-guest sensors of 6A,6B-, 6A,6C-, 6A,6D-, and 6A,6E-bis(2-naphthylsulfenyl)-γ-cyclodextrins for detecting organic compounds by fluorescence enhancements, Anal. Chem., 64, 1154, 10.1021/ac00034a014
Moriwaki, 1987, Excimer formation and induced-fit type of complexation of β-cyclodextrin capped by two naphthyl moieties, Bull. Chem. Soc. Jpn., 60, 3619, 10.1246/bcsj.60.3619
Suzuki, I., Ohkubo, M., Ueno, A., and Osa, T. (1992). Detection of organic compounds by dual fluorescence of bis(1-pyrenecarbonyl)-γ-cyclodextrins. Chem. Lett., 269–272.
Ueno, 1988, Association, photodimerization, and induced-fit types of host-guest complexation of anthracene-appended γ-cyclodextrin derivatives, J. Am. Chem. Soc., 110, 4323, 10.1021/ja00221a036
Ueno, 1991, γ-Cyclodextrin template method for controlling stereochemistry of bimolecular interactions and reactions, J. Am. Chem. Soc., 113, 7034, 10.1021/ja00018a051
Ikeda, 2005, Skeleton-selective fluorescent chemosensor based on cyclodextrin bearing a 4-amino-7-nitrobenz-2-oxa-1,3-diazole moiety, Org. Biomol. Chem., 3, 4262, 10.1039/b508477f
Liu, 2007, Novel permethylated β-cyclodextrin derivatives appended with chromophores as efficient fluorescent sensors for the molecular recognition of bile salts, J. Org. Chem., 72, 8227, 10.1021/jo071131m
Kuwabara, 1994, Inclusion complexes and guest-induced color changes of pH-indicator-modified β-cyclodextrins, J. Phys. Chem., 98, 6297, 10.1021/j100076a011
Ueno, 1992, A modified cyclodextrin as a guest responsive color-change indicator, Nature, 356, 136, 10.1038/356136a0
Kuwabara, T., Nakamura, A., Ueno, A., and Toda, F. (1994). Supramolecular thermochromism of a dye-appended □-cyclodextrin. J. Chem. Soc, Chem. Commun., 689–690.
Aoyagi, 1997, Alizarin yellow-modified β-cyclodextrin as a guest-responsive absorption change sensor, Anal. Chem., 69, 659, 10.1021/ac960727z
Barcza, 1989, Complex formation of cyclomalto-octaose with tetrabromophenolphthalein and some related compounds, Carbohyd. Res., 192, 103, 10.1016/0008-6215(89)85170-5
Haider, 2005, Photoactive metallocyclodextrins: sophisticated supramolecular arrays for the construction of light activated miniature devices, Chem. Soc. Rev., 34, 120, 10.1039/b203904b
Pikramenou, 1994, Luminescence from supramolecules triggered by the molecular recognition of substrate, Coord. Chem. Rev., 132, 181, 10.1016/0010-8545(94)80039-1
Mortellaro, 1996, A supramolecular chemosensor for aromatic hydrocarbons, J. Am. Chem. Soc., 118, 7414, 10.1021/ja961323r
Michels, 2002, Nonconvalent binding of sensitizers for lanthanide(III) luminescence in an EDTA-bis(β-cyclodextrin) ligand, J. Am. Chem. Soc., 124, 2056, 10.1021/ja017025y
Haider, J.M., and Pikramenou, Z. (2001). Metal assembly of cyclodextrin recognition sites. Eur. J. Inorg. Chem., 189–194.
Heck, 2002, New scaffolds for supramolecular chemistry: upper-rim fully tethered 5-methyleneureido-5′-methyl-2,2′-bipyridyl cyclodextrins, Chem. Eur. J., 8, 2438, 10.1002/1521-3765(20020603)8:11<2438::AID-CHEM2438>3.0.CO;2-A
Liu, 2004, Biquinolino-modified β-cyclodextrin dimers and their metal complexes as efficient fluorescent sensors for the molecular recognition of steroids, Chem. Eur. J., 10, 3685, 10.1002/chem.200305724
Yang, 2003, Porphyrin assembly on β-cyclodextrin for selective sensing and detection of a zinc ion based on the dual emission fluorescence ratio, Anal. Chem., 75, 612, 10.1021/ac020467n
Liu, 2007, Fluorescence sensing and binding behavior of aminobenzenesulfonamidoquinolino-β-cyclodextrin to Zn2+, Org. Lett., 9, 315, 10.1021/ol062816w
Nakamura, M., Ikeda, T., Nakamura, A., Ikeda, H., Ueno, A., and Toda, F. (1995). Remarkable molecular recognition of dansyl-modified cyclodextrin dimer. Chem. Lett., 343–344.
Engbersen, 2000, Cyclodextrin dimers as receptor molecules for steroid sensors, Chem. Eur. J., 6, 4034, 10.1002/1521-3765(20001103)6:21<4034::AID-CHEM4034>3.0.CO;2-3
Kikuchi, 2001, Synthesis of bis dansyl-modified β-cyclodextrin liner trimer having multi-recognition sites and high hydrophobic environment, Tetrahedron, 57, 9317, 10.1016/S0040-4020(01)00935-8
Sasaki, K., Nagasawa, M., and Kuroda, Y. (2001). New cyclodextrin dimer and trimer: formation of biphenyl excimer and their molecular recognition. Chem. Commun., 2630–2631.
Yamauchi, 2000, Selective potassium ion recognition by benzo-15-crown-5 fluoroionophore/γ-cyclodextrin complex sensors in water, Anal. Chem., 72, 5841, 10.1021/ac000741i
Hayashita, T., Qing, D., Minagawa, M., Lee, J.C., Ku, C.H., and Teramae, N. (2003). Highly selective recognition of lead ion in water by a podand fluoroionophore/γ-cyclodextrin complex sensor. Chem. Commun., 2160–2161.
Tong, 2001, Boronic acid fluorophore/β-cyclodextrin complex sensors for selective sugar recognition in water, Anal. Chem., 73, 1530, 10.1021/ac001363k
Jung, 2006, α-CD/crown-appended diazophenol for selective sensing of amines, Org. Lett., 8, 3009, 10.1021/ol060923k
Jung, 2008, A color version of the hinsberg test: permethylated cyclodextrin and crown-appended azophenol for highly selective sensing of amines, Tetrahedron, 64, 6705, 10.1016/j.tet.2008.05.013
Engbersen, 1998, Novel water-soluble β-cyclodextrin-calix[4]arene couples as fluorescent sensor molecules for the detection of neutral analytes, J. Org. Chem., 63, 5339, 10.1021/jo9723321
Liu, 2001, Cooperative multiple recognition by novel calix[4]arene-tethered β-cyclodextrin and calix[4]arene-bridged bis(β-cyclodextrin), J. Org. Chem., 66, 7209, 10.1021/jo015673u
Suzuki, 2006, Supramolecular probe for bicarbonate exhibiting anomalous pyrene fluorescence in aqueous media, J. Am. Chem. Soc., 128, 4498, 10.1021/ja055772f
Klotz, 2006, Homo- and hetero-[3]rotaxanes with two π-systems clasped in a single macrocycle, J. Am. Chem. Soc., 128, 15374, 10.1021/ja0665139
Deng, 2007, A chemical-responsive supramolecular hydrogel from modified cyclodextrins, Angew. Chem. Int. Ed., 46, 5144, 10.1002/anie.200701272
Deng, 2008, Construction of chemical-responsive supramolecular hydrogels from guest-modified cyclodextrins, Chem. Asian J., 3, 687, 10.1002/asia.200700378
Ogoshi, T., Takashima, Y., Yamaguchi, H., and Harada, A. (2006). Cyclodextrin-grafted poly(phenylene ethynylene) with chemical-responsive properties. Chem. Commun., 3702–3704.
Yashima, 2001, Switching of macromolecular helicity for visual distinction of molecular recognition events, J. Am. Chem. Soc., 123, 8159, 10.1021/ja016393z
Onouchi, 2006, Chirality sensing of various biomolecules with helical poly(phenylacetylene)s bearing acidic functional groups in water, J. Polym. Sci. Part A: Polym. Chem., 44, 5039, 10.1002/pola.21621
Maeda, 2006, Switching of macromolecular helicity of optically active poly(phenylacetylene)s bearing cyclodextrin pendants induced by various external stimuli, J. Am. Chem. Soc., 128, 7639, 10.1021/ja060858+
Hossain, 2003, Novel peptides bearing pyrene and coumarin units with or without β-cyclodextrin in their side chains exhibit intramolecular fluorescence resonance energy transfer, J. Am. Chem. Soc., 125, 11178, 10.1021/ja036427y
Hossain, 2000, Fluorescence resonance energy transfer in a novel cyclodextrin–peptide conjugate for detecting steroid molecules, Bioorg. Med. Chem. Lett., 10, 1857
Yana, 2002, Double naphthalene-tagged cyclodextrin-peptide capable of exhibiting guest-induced naphthalene excimer fluorescence, Macromol. Rapid. Commun., 23, 11, 10.1002/1521-3927(20020101)23:1<11::AID-MARC11>3.0.CO;2-D
Furukawa, 2003, Sensing behavior of fluorescent cyclodextrin/peptide hybrids bearing a macrocyclic metal complex, Macromol. Rapid. Commun., 24, 202, 10.1002/marc.200390033
Hossain, 2001, Guest-induced diminishment in fluorescence quenching and molecule sensing ability of a novel cyclodextrin-peptide conjugate, J. Am. Chem. Soc., 123, 7435, 10.1021/ja0105921
Fujumoto, 2008, A DNA duplex-based, tailor-made fluorescent sensor for porphyrin derivatives, Bioconjugate Chem., 19, 1132, 10.1021/bc800133e
Yuan, 2001, Synthesis of fullerene-cyclodextrin conjugates, Tetrahedron Lett., 42, 6727, 10.1016/S0040-4039(01)01375-2
Ogoshi, 2007, Chemically-responsive sol-gel transition of supramolecular single-walled carbon nanotubes (SWNTs) hydrogel made by hybrids of SWNTs and cyclodextrins, J. Am. Chem. Soc., 129, 4878, 10.1021/ja070457+
Zhao, 2008, Pyrenecyclodextrin-decorated single-walled carbon nanotube field-effect transistors as chemical sensors, Adv. Mater., 20, 1910, 10.1002/adma.200702804
Liang, 2008, Solvent-controlled photoinduced electron transfer between porphyrin and carbon nanotubes, J. Org. Chem., 73, 2163, 10.1021/jo702400k
Liu, 1999, Cyclodextrin-modified gold nanoparticles. Host-guest interactions at work to control colloidal properties, J. Am. Chem. Soc., 121, 4304, 10.1021/ja990330n
Liu, 2001, Network aggregates formed by C60 and gold nanoparticles capped with cyclodextrin hosts, Nano Lett., 1, 57, 10.1021/nl0001813