Chemical Sensors Based on Cyclodextrin Derivatives

Sensors - Tập 8 Số 8 - Trang 4961-4982
Tomoki Ogoshi1,2, Akira Harada2
1Department of Chemistry and Chemical Engineering, Graduate School of Natural Science and Technology, Kanazawa University / Kakuma-machi, Kanazawa, 920-1192, Japan
2Department of Macromolecular Science, Osaka University, 1-1 Machikaneyama-cho, Toyonaka, Osaka 560-0043, Japan

Tóm tắt

This review focuses on chemical sensors based on cyclodextrin (CD) derivatives. This has been a field of classical interest, and is now of current interest for numerous scientists. First, typical chemical sensors using chromophore appended CDs are mentioned. Various “turn-off” and “turn-on” fluorescent chemical sensors, in which fluorescence intensity was decreased or increased by complexation with guest molecules, respectively, were synthesized. Dye modified CDs and photoactive metal ion-ligand complex appended CDs, metallocyclodextrins, were also applied for chemical sensors. Furthermore, recent novel approaches to chemical sensing systems using supramolecular structures such as CD dimers, trimers and cooperative binding systems of CDs with the other macrocycle [2]rotaxane and supramolecular polymers consisting of CD units are mentioned. New chemical sensors using hybrids of CDs with p-conjugated polymers, peptides, DNA, nanocarbons and nanoparticles are also described in this review.

Từ khóa


Tài liệu tham khảo

Bender, M.L., and Komiyama, M. (1978). Cyclodextrin chemistry, Springer-Verlag.

Szejtli, S. (1998). Cyclodextrin technology, Kluwer Academic Publishers.

Szejtli, J., and Osa, T. (1996). Comprehensive cyclodextrin chemistry, Pergmon.

Nepogodiev, 1998, Cyclodextrin-based catenanes and rotaxanes, Chem. Rev., 98, 1959, 10.1021/cr970049w

Gattuso, 1998, Synthetic cyclic oligosaccharides, Chem. Rev., 98, 1919, 10.1021/cr960133w

Khan, 1998, Methods for selective modifications of cyclodextrins, Chem. Rev., 98, 1977, 10.1021/cr970012b

Engeldinger, 2003, Capped cyclodextrins, Chem. Rev., 103, 4147, 10.1021/cr030670y

Rekharsky, 1998, Complexation thermodynamics of cyclodextrins, Chem. Rev., 98, 1875, 10.1021/cr970015o

Connors, 1997, The stability of cyclodextrin complexes in solution, Chem. Rev., 97, 1325, 10.1021/cr960371r

Wenz, 2006, Cyclodextrin rotaxanes and polyrotaxanes, Chem. Rev., 106, 782, 10.1021/cr970027+

Armspach, 1993, The self-assembly of catenated cyclodextrins, Angew. Chem. Int. Ed., 32, 854, 10.1002/anie.199308541

Armspach, 1995, Catenated cyclodextrins, Chem. Eur. J., 1, 33, 10.1002/chem.19950010109

Ogino, 1981, Relatively high-yield syntheses of rotaxanes. Syntheses and properties of compounds consisting of cyclodextrins threaded by α,ω-diaminoalkanes coordinated to cobalt(III) complexes, J. Am. Chem. Soc., 103, 1303, 10.1021/ja00395a091

Ogino, 1984, Synthesis and properties of rotaxane complexes. [2]Rotaxanes consisting of α-or β-cyclodextrin threaded by (μ-α,ω-diaminoalkane)bis[chlorobis(ethylenediamine)cobalt(III)] complexes, Inorg. Chem., 23, 3312, 10.1021/ic00189a009

Isnin, 1992, Self-assembling metal rotaxane complexes of α-cyclodextrin, J. Am. Chem. Soc., 114, 3136, 10.1021/ja00034a069

Isnin, 1991, Novel class of asymmetric zwitterionic rotaxanes based on α-cyclodextrin, J. Am. Chem. Soc, 113, 8188, 10.1021/ja00021a067

Harada, A., Li, J., and Kamachi, M. (1997). Non-ionic [2]rotaxanes containing methylated α-cyclodextrins. Chem. Commun., 1413–1414.

Harada, 1992, The molecular necklace: a rotaxane containing many threaded α-cyclodextrins, Nature, 356, 325, 10.1038/356325a0

Harada, 1993, Synthesis of a tubular polymer from threaded cyclodextrins, Nature, 364, 516, 10.1038/364516a0

Harada, 2001, Cyclodextrin-based molecular machines, Acc. Chem. Res., 34, 456, 10.1021/ar000174l

Kuad, 2007, External stimulus-responsive supramolecular structures formed by a stilbene cyclodextrin dimer, J. Am. Chem. Soc., 129, 12630, 10.1021/ja075139p

Harada, 2006, Supramolecular polymers based on cyclodextrins, J. Polym. Sci. A. Polym. Chem., 44, 5113, 10.1002/pola.21618

Harada, 2006, Cyclodextrin-based supramolecular polymers, Adv. Polym. Sci., 201, 1, 10.1007/12_056

Thomas, 2007, Chemical sensors based on amplifying fluorescent conjugated polymers, Chem. Rev., 107, 1339, 10.1021/cr0501339

McQuade, 2000, Conjugated polymer-based chemical sensors, Chem. Rev., 100, 2537, 10.1021/cr9801014

Sherigara, 2003, Electrocatalytic properties and sensor applications of fullerenes and carbon nanotubes, Electroanalysis, 15, 753, 10.1002/elan.200390094

Bonifazi, 2007, Supramolecular [60]fullerene chemistry on surfaces, Chem. Soc. Rev., 36, 390, 10.1039/B604308A

Anker, 2008, Biosensing with plasmonic nanosensors, Nature Mater., 7, 442, 10.1038/nmat2162

Murphy, C.J., Gole, A.M., Hunyadi, S.E., Stone, J.W., Sisco, P.N., Alkilany, A., Kinard, B.E., and Hankins, P. (2008). Chemical sensing and imaging with metallic nanorods. Chem. Commun., 544–557.

Ueno, A., Minato, S., Suzuki, I., Fukushima, M., Ohkubo, M., Osa, T., Hamada, F., and Murai, K. (1990). Host–guest sensory system of dansyl-modified β-cyclodextrin for detecting steroidal compounds by dansyl fluorescence. Chem. Lett., 605–608.

Hamada, 1993, Dansyl-modified γ-cyclodextrin as a fluorescent sensor for molecular recognition, J. Incl. Phenom., 15, 273, 10.1007/BF00709072

Wang, Y., Ikeda, T., Ueno, A., and Toda, F. (1992). Syntheses and molecular recognition abilities of 6-O-, 2-O-, and 3-O-dansyl-γ-cyclodextrins. Chem. Lett., 863–866.

Wang, 1994, Dansyl-β-cyclodextrins as fluorescent sensors responsive to organic compounds, Bull. Chem. Soc. Jpn., 67, 1598, 10.1246/bcsj.67.1598

Corradini, 1996, A modified cyclodextrin with a fully encapsulated dansyl group: self-inclusion in the solid state and in solution, Chem. Eur. J., 2, 373, 10.1002/chem.19960020404

Pagliari, 2004, Enaitioselective fluorescence sensing of amino acids by modified cyclodextrins: role of the cavity and sensing mechanism, Chem. Eur. J., 10, 2749, 10.1002/chem.200305448

Hamasaki, 1993, Fluorescent sensors of molecular recognition. Modified cyclodextrins capable of exhibiting guest-responsive twisted intramolecular charge transfer fluorescence, J. Am. Chem. Soc., 115, 5035, 10.1021/ja00065a012

Hamasaki, 1994, Molecular recognition indicators of modified cyclodextrins using twisted intramolecular charge transfer fluorescence, Bull. Chem. Soc. Jpn., 67, 516, 10.1246/bcsj.67.516

Hamasaki, K., Ueno, A., and Toda, F. (1993). A fluorescent α-cyclodextrin as a sensor for detecting aliphatic alcohols by dual fluorescence arising from normal planar and twisted intramolecular charge transfer excited states. J. Chem. Soc, Chem. Commun., 331–333.

Ueno, 1986, Fluorescence and circular dichroism studies on host-guest complexation of γ-cyclodextrin bearing two 2-naphthyl moieties, Bull. Chem. Soc. Jpn., 59, 465, 10.1246/bcsj.59.465

Ueno, 1992, Host-guest sensors of 6A,6B-, 6A,6C-, 6A,6D-, and 6A,6E-bis(2-naphthylsulfenyl)-γ-cyclodextrins for detecting organic compounds by fluorescence enhancements, Anal. Chem., 64, 1154, 10.1021/ac00034a014

Moriwaki, 1987, Excimer formation and induced-fit type of complexation of β-cyclodextrin capped by two naphthyl moieties, Bull. Chem. Soc. Jpn., 60, 3619, 10.1246/bcsj.60.3619

Suzuki, I., Ohkubo, M., Ueno, A., and Osa, T. (1992). Detection of organic compounds by dual fluorescence of bis(1-pyrenecarbonyl)-γ-cyclodextrins. Chem. Lett., 269–272.

Ueno, 1988, Association, photodimerization, and induced-fit types of host-guest complexation of anthracene-appended γ-cyclodextrin derivatives, J. Am. Chem. Soc., 110, 4323, 10.1021/ja00221a036

Ueno, 1991, γ-Cyclodextrin template method for controlling stereochemistry of bimolecular interactions and reactions, J. Am. Chem. Soc., 113, 7034, 10.1021/ja00018a051

Ikeda, 2005, Skeleton-selective fluorescent chemosensor based on cyclodextrin bearing a 4-amino-7-nitrobenz-2-oxa-1,3-diazole moiety, Org. Biomol. Chem., 3, 4262, 10.1039/b508477f

Liu, 2007, Novel permethylated β-cyclodextrin derivatives appended with chromophores as efficient fluorescent sensors for the molecular recognition of bile salts, J. Org. Chem., 72, 8227, 10.1021/jo071131m

Kuwabara, 1994, Inclusion complexes and guest-induced color changes of pH-indicator-modified β-cyclodextrins, J. Phys. Chem., 98, 6297, 10.1021/j100076a011

Ueno, 1992, A modified cyclodextrin as a guest responsive color-change indicator, Nature, 356, 136, 10.1038/356136a0

Kuwabara, T., Nakamura, A., Ueno, A., and Toda, F. (1994). Supramolecular thermochromism of a dye-appended □-cyclodextrin. J. Chem. Soc, Chem. Commun., 689–690.

Aoyagi, 1997, Alizarin yellow-modified β-cyclodextrin as a guest-responsive absorption change sensor, Anal. Chem., 69, 659, 10.1021/ac960727z

Barcza, 1989, Complex formation of cyclomalto-octaose with tetrabromophenolphthalein and some related compounds, Carbohyd. Res., 192, 103, 10.1016/0008-6215(89)85170-5

Haider, 2005, Photoactive metallocyclodextrins: sophisticated supramolecular arrays for the construction of light activated miniature devices, Chem. Soc. Rev., 34, 120, 10.1039/b203904b

Pikramenou, 1994, Luminescence from supramolecules triggered by the molecular recognition of substrate, Coord. Chem. Rev., 132, 181, 10.1016/0010-8545(94)80039-1

Mortellaro, 1996, A supramolecular chemosensor for aromatic hydrocarbons, J. Am. Chem. Soc., 118, 7414, 10.1021/ja961323r

Michels, 2002, Nonconvalent binding of sensitizers for lanthanide(III) luminescence in an EDTA-bis(β-cyclodextrin) ligand, J. Am. Chem. Soc., 124, 2056, 10.1021/ja017025y

Haider, J.M., and Pikramenou, Z. (2001). Metal assembly of cyclodextrin recognition sites. Eur. J. Inorg. Chem., 189–194.

Heck, 2002, New scaffolds for supramolecular chemistry: upper-rim fully tethered 5-methyleneureido-5′-methyl-2,2′-bipyridyl cyclodextrins, Chem. Eur. J., 8, 2438, 10.1002/1521-3765(20020603)8:11<2438::AID-CHEM2438>3.0.CO;2-A

Liu, 2004, Biquinolino-modified β-cyclodextrin dimers and their metal complexes as efficient fluorescent sensors for the molecular recognition of steroids, Chem. Eur. J., 10, 3685, 10.1002/chem.200305724

Yang, 2003, Porphyrin assembly on β-cyclodextrin for selective sensing and detection of a zinc ion based on the dual emission fluorescence ratio, Anal. Chem., 75, 612, 10.1021/ac020467n

Liu, 2007, Fluorescence sensing and binding behavior of aminobenzenesulfonamidoquinolino-β-cyclodextrin to Zn2+, Org. Lett., 9, 315, 10.1021/ol062816w

Nakamura, M., Ikeda, T., Nakamura, A., Ikeda, H., Ueno, A., and Toda, F. (1995). Remarkable molecular recognition of dansyl-modified cyclodextrin dimer. Chem. Lett., 343–344.

Engbersen, 2000, Cyclodextrin dimers as receptor molecules for steroid sensors, Chem. Eur. J., 6, 4034, 10.1002/1521-3765(20001103)6:21<4034::AID-CHEM4034>3.0.CO;2-3

Kikuchi, 2001, Synthesis of bis dansyl-modified β-cyclodextrin liner trimer having multi-recognition sites and high hydrophobic environment, Tetrahedron, 57, 9317, 10.1016/S0040-4020(01)00935-8

Sasaki, K., Nagasawa, M., and Kuroda, Y. (2001). New cyclodextrin dimer and trimer: formation of biphenyl excimer and their molecular recognition. Chem. Commun., 2630–2631.

Yamauchi, 2000, Selective potassium ion recognition by benzo-15-crown-5 fluoroionophore/γ-cyclodextrin complex sensors in water, Anal. Chem., 72, 5841, 10.1021/ac000741i

Hayashita, T., Qing, D., Minagawa, M., Lee, J.C., Ku, C.H., and Teramae, N. (2003). Highly selective recognition of lead ion in water by a podand fluoroionophore/γ-cyclodextrin complex sensor. Chem. Commun., 2160–2161.

Tong, 2001, Boronic acid fluorophore/β-cyclodextrin complex sensors for selective sugar recognition in water, Anal. Chem., 73, 1530, 10.1021/ac001363k

Jung, 2006, α-CD/crown-appended diazophenol for selective sensing of amines, Org. Lett., 8, 3009, 10.1021/ol060923k

Jung, 2008, A color version of the hinsberg test: permethylated cyclodextrin and crown-appended azophenol for highly selective sensing of amines, Tetrahedron, 64, 6705, 10.1016/j.tet.2008.05.013

Engbersen, 1998, Novel water-soluble β-cyclodextrin-calix[4]arene couples as fluorescent sensor molecules for the detection of neutral analytes, J. Org. Chem., 63, 5339, 10.1021/jo9723321

Liu, 2001, Cooperative multiple recognition by novel calix[4]arene-tethered β-cyclodextrin and calix[4]arene-bridged bis(β-cyclodextrin), J. Org. Chem., 66, 7209, 10.1021/jo015673u

Suzuki, 2006, Supramolecular probe for bicarbonate exhibiting anomalous pyrene fluorescence in aqueous media, J. Am. Chem. Soc., 128, 4498, 10.1021/ja055772f

Klotz, 2006, Homo- and hetero-[3]rotaxanes with two π-systems clasped in a single macrocycle, J. Am. Chem. Soc., 128, 15374, 10.1021/ja0665139

Deng, 2007, A chemical-responsive supramolecular hydrogel from modified cyclodextrins, Angew. Chem. Int. Ed., 46, 5144, 10.1002/anie.200701272

Deng, 2008, Construction of chemical-responsive supramolecular hydrogels from guest-modified cyclodextrins, Chem. Asian J., 3, 687, 10.1002/asia.200700378

Ogoshi, T., Takashima, Y., Yamaguchi, H., and Harada, A. (2006). Cyclodextrin-grafted poly(phenylene ethynylene) with chemical-responsive properties. Chem. Commun., 3702–3704.

Yashima, 2001, Switching of macromolecular helicity for visual distinction of molecular recognition events, J. Am. Chem. Soc., 123, 8159, 10.1021/ja016393z

Onouchi, 2006, Chirality sensing of various biomolecules with helical poly(phenylacetylene)s bearing acidic functional groups in water, J. Polym. Sci. Part A: Polym. Chem., 44, 5039, 10.1002/pola.21621

Maeda, 2006, Switching of macromolecular helicity of optically active poly(phenylacetylene)s bearing cyclodextrin pendants induced by various external stimuli, J. Am. Chem. Soc., 128, 7639, 10.1021/ja060858+

Hossain, 2003, Novel peptides bearing pyrene and coumarin units with or without β-cyclodextrin in their side chains exhibit intramolecular fluorescence resonance energy transfer, J. Am. Chem. Soc., 125, 11178, 10.1021/ja036427y

Hossain, 2000, Fluorescence resonance energy transfer in a novel cyclodextrin–peptide conjugate for detecting steroid molecules, Bioorg. Med. Chem. Lett., 10, 1857

Yana, 2002, Double naphthalene-tagged cyclodextrin-peptide capable of exhibiting guest-induced naphthalene excimer fluorescence, Macromol. Rapid. Commun., 23, 11, 10.1002/1521-3927(20020101)23:1<11::AID-MARC11>3.0.CO;2-D

Furukawa, 2003, Sensing behavior of fluorescent cyclodextrin/peptide hybrids bearing a macrocyclic metal complex, Macromol. Rapid. Commun., 24, 202, 10.1002/marc.200390033

Hossain, 2001, Guest-induced diminishment in fluorescence quenching and molecule sensing ability of a novel cyclodextrin-peptide conjugate, J. Am. Chem. Soc., 123, 7435, 10.1021/ja0105921

Fujumoto, 2008, A DNA duplex-based, tailor-made fluorescent sensor for porphyrin derivatives, Bioconjugate Chem., 19, 1132, 10.1021/bc800133e

Yuan, 2001, Synthesis of fullerene-cyclodextrin conjugates, Tetrahedron Lett., 42, 6727, 10.1016/S0040-4039(01)01375-2

Ogoshi, 2007, Chemically-responsive sol-gel transition of supramolecular single-walled carbon nanotubes (SWNTs) hydrogel made by hybrids of SWNTs and cyclodextrins, J. Am. Chem. Soc., 129, 4878, 10.1021/ja070457+

Zhao, 2008, Pyrenecyclodextrin-decorated single-walled carbon nanotube field-effect transistors as chemical sensors, Adv. Mater., 20, 1910, 10.1002/adma.200702804

Liang, 2008, Solvent-controlled photoinduced electron transfer between porphyrin and carbon nanotubes, J. Org. Chem., 73, 2163, 10.1021/jo702400k

Liu, 1999, Cyclodextrin-modified gold nanoparticles. Host-guest interactions at work to control colloidal properties, J. Am. Chem. Soc., 121, 4304, 10.1021/ja990330n

Liu, 2000, Cyclodextrin-modified gold nanospheres, Langmuir, 16, 3000, 10.1021/la991519f

Liu, 2001, Network aggregates formed by C60 and gold nanoparticles capped with cyclodextrin hosts, Nano Lett., 1, 57, 10.1021/nl0001813

Tang, 2008, A new nanobiosensor for glucose with high sensitivity and selectivity in serum based on fluorescence resonance energy transfer (FRET) between CdTe quantum dots and Au nanoparticles, Chem. Eur. J., 14, 3637, 10.1002/chem.200701871