Chemical Properties and Ash Slagging Characteristics of Solid Fuels from Urban Leaf Litter
Tóm tắt
Urban leaf litter occurs in significant, yet unknown, quantities and is regularly disposed of or composted. Instead, it could be widely used as a regional resource for solid fuel production. Samples of five tree genera (Acer, Aesculus, Fagus, Tilia, Quercus) were taken after leaf abscission and analyzed for elemental composition (C, H, N, S, Ca, Cl, Cu, K, Mg, Mn, Na, P, Zn) and ash slagging behavior. Ash content was generally high (13.8 % dry matter) due to soil adherence. Mashing and subsequent mechanical separation significantly reduced concentrations of Cl, K and S in the resulting press cake, resulting in concentrations of 0.01, 0.36 and 0.07 % dry matter respectively (mass flow into press cake: 25.6, 51.54 and 73.83 %, respectively). Average lower heating value of the press cake was 19.22 MJ kg−1 dry matter (ash free). Processing elevated the mean ash softening temperature from 1233 °C for raw materials to 1245 °C for press cakes. However, processing did not alter ash content, which indicates that additional washing is necessary for a further increase in fuel quality.
Tài liệu tham khảo
Larondelle, N., Haase, D.: Urban ecosystem services assessment along a rural–urban gradient: a cross-analysis of European cities. Ecol. Ind. 29, 179–190 (2013). doi:10.1016/j.ecolind.2012.12.022
European Commission: Proposal for a directive of the European Parliament and the Council amending Directives 2008/98/EC on waste, 94/62/EC on packaging and packaging waste, 1999/31/EC on the landfill of waste, 2000/53/E C on end-of-life vehicles, 2006/66/EC on batteries and accumulators and waste batteries and accumulators, and 2012/19/EU on waste electrical and electronic equipment (2014)
Manfredi, S., Tonini, D., Christensen, T.H.: Environmental assessment of different management options for individual waste fractions by means of life-cycle assessment modelling. Resour. Conserv. Recycl. 55(11), 995–1004 (2011). doi:10.1016/j.resconrec.2011.05.009
Liew, L.N., Shi, J., Li, Y.: Methane production from solid-state anaerobic digestion of lignocellulosic biomass. Biomass Bioenergy 46, 125–132 (2012). doi:10.1016/j.biombioe.2012.09.014
Prochnow, A., Heiermann, M., Plöchl, M., Linke, B., Idler, C., Amon, T., Hobbs, P.: Bioenergy from permanent grassland: a review—1. Biogas. Bioresour. Technol. 100(21), 4931–4944 (2009). doi:10.1016/j.biortech.2009.05.070
Lombardi, L., Carnevale, E., Corti, A.: A review of technologies and performances of thermal treatment systems for energy recovery from waste. Waste Manag. 37, 26–44 (2015). doi:10.1016/j.wasman.2014.11.010
Springer, T.L.: Biomass yield from an urban landscape. Biomass Bioenergy 37, 82–87 (2012). doi:10.1016/j.biombioe.2011.12.029
Zamorano, M., Popov, V., Rodríguez, M., García-Maraver, A.: A comparative study of quality properties of pelletized agricultural and forestry lopping residues. Renew. Energy 36(11), 3133–3140 (2011). doi:10.1016/j.renene.2011.03.020
Forrest, M., Moore, T.: Eucalyptus gunnii: a possible source of bioenergy? Biomass Bioenergy 32(10), 978–980 (2008). doi:10.1016/j.biombioe.2008.01.010
Heckman, J., Kluchinski, D.: Chemical composition of municipal leaf waste and hand-collected urban leaf litter. J. Environ. Quality 25(4), 930 (1996). doi:10.2134/jeq1996.00472425002500040048x
Jenkins, B.M., Baxter, L.L., Miles, T.R.: Combustion properties of biomass. Fuel Process. Technol. 54(1–3), 17–46 (1998). doi:10.1016/S0378-3820(97)00059-3
Obernberger, I., Brunner, T., Barnthaler, G.: Chemical properties of solid biofuels—significance and impact. Biomass Bioenergy 30(11), 973–982 (2006). doi:10.1016/j.biombioe.2006.06.011
Joergensen, R.G., Scholle, G.A., Wolters, V.: Dynamics of mineral components in the forest floor of an acidic beech (Fagus sylvatica L.) forest. Eur. J. Soil Biol. 45(4), 285–289 (2009). doi:10.1016/j.ejsobi.2009.04.006
Tyler, G.: Changes in the concentrations of major, minor and rare-earth elements during leaf senescence and decomposition in a Fagus sylvatica forest. For. Ecol. Manage. 206(1–3), 167–177 (2005). doi:10.1016/j.foreco.2004.10.065
Bühle, L., Dürl, G., Hensgen, F., Urban, A., Wachendorf, M.: Effects of hydrothermal conditioning and mechanical dewatering on ash melting behaviour of solid fuel produced from European semi-natural grasslands. Fuel 118, 123–129 (2014). doi:10.1016/j.fuel.2013.10.063
Steenari, B.-M., Lundberg, A., Pettersson, H., Wilewska-Bien, M., Andersson, D.: Investigation of ash sintering during combustion of agricultural residues and the effect of additives. Energy Fuels 23(11), 5655–5662 (2009)
Wachendorf, M., Richter, F., Fricke, T., Graß, R., Neff, R.: Utilization of semi-natural grassland through integrated generation of solid fuel and biogas from biomass. I. Effects of hydrothermal conditioning and mechanical dehydration on mass flows of organic and mineral plant compounds, and nutrient balances. Grass Forage Sci. 64(2), 132–143 (2009)
Hensgen, F., Richter, F., Wachendorf, M.: Integrated generation of solid fuel and biogas from green cut material from landscape conservation and private households. Bioresour. Technol. 102(22), 10441–10450 (2011). doi:10.1016/j.biortech.2011.08.119
Boden, J., Frost, E., Bullermann, M., Graue, M., Brand, S.: Fuel pellets made of leaves and method for producing same. Google Patents. http://www.google.com/patents/EP2194112A1?cl=en (2010). Accessed 4 December 2014
Brönstrup, P.: Energiegewinnung aus Herbstlaub. Das Geld liegt auf der Straße. http://www.wdr.de/wissen/wdr_wissen/themen/natur_umwelt/dossier_energie/bioenergie/energiegewinnung_aus_herbstlaub.php5 (2011). Accessed 4 December 2014
Bühle, L., Hensgen, F., Donnison, I., Heinsoo, K., Wachendorf, M.: Life cycle assessment of the integrated generation of solid fuel and biogas from biomass (IFBB) in comparison to different energy recovery, animal-based and non-refining management systems. Bioresour. Technol. 111, 230–239 (2012)
Friedl, A., Padouvas, E., Rotter, H., Varmuza, K.: Prediction of heating values of biomass fuel from elemental composition. Anal. Chim. Acta 544(1–2), 191–198 (2005). doi:10.1016/j.aca.2005.01.041
R Core Team: R: A language and environment. R Foundation for Statistical Computing, Vienna, Austria (2013)
Giraudoux, P.: Pgirmess & pgirbric. Miscellaneous functions for data handling and analysis in ecology. http://giraudoux.pagesperso-orange.fr/ (2014). Accessed 30 October 2014
Hagen-Thorn, A., Varnagiryte, I., Nihlgård, B., Armolaitis, K.: Autumn nutrient resorption and losses in four deciduous forest tree species. For. Ecol. Manage. 228(1–3), 33–39 (2006). doi:10.1016/j.foreco.2006.02.021
Kurita, Y., Baba, K., Ohnishi, M., Anegawa, A., Shichijo, C., Kosuge, K., Fukaki, H., Mimura, T.: Establishment of a shortened annual cycle system; a tool for the analysis of annual re-translocation of phosphorus in the deciduous woody plant (Populus alba L.). J. Plant. Res. 127(4), 545–551 (2014). doi:10.1007/s10265-014-0634-2
Lin, P., Wang, W.Q.: Changes in the leaf composition, leaf mass and leaf area during leaf senescence in three species of mangroves. Ecol. Eng. 16(3), 415–424 (2001). doi:10.1016/S0925-8574(00)00126-9
Pauleit, S., Jones, N., Garcia-Martin, G., Garcia-Valdecantos, J.L., Rivière, L.M., Vidal-Beaudet, L., Bodson, M., Randrup, T.B.: Tree establishment practice in towns and cities—results from a European survey. Urban For. Urban Green. 1(2), 83–96 (2002). doi:10.1078/1618-8667-00009
Kasuya, F., Glarborg, P., Johnsson, J.E., Dam-Johansen, K.: The thermal DeNOx process: Influence of partial pressures and temperature. Chem. Eng. Sci. 50(9), 1455–1466 (1995)
DIN Deutsches Institut für Normung e. V.: Feste Biobrennstoffe—Brennstoffspezifikationen und –klassen—Teil 6: Nicht-holzartige Pellets für nichtindustrielle Verwendung; Deutsche Fassung. Beuth, Berlin(EN 14961-6:2012) (2012)
Lindström, E., Larsson, S.H., Boström, D., Öhman, M.: Slagging characteristics during combustion of woody biomass pellets made from a range of different forestry assortments. Energy Fuels 24(6), 3456–3461 (2010). doi:10.1021/ef901571c
Lovkova, M.Y., Buzuk, G.N., Sokolova, S.M., Kliment’eva, N.I.: Chemical features of medicinal plants (review). Appl. Biochem. Microbiol. 37(3), 229–237 (2001)
Hartmann H: Grundlagen der thermo-chemischen Umwandlung biogener Festbrennstoffe, Brennstoffzusammensetzung und -eigenschaften. Energie aus Biomasse: Grundlagen, Techniken und Verfahren, 333–374. Springer, Dordrecht, Heidelberg, London, New York, NY (2009)
Öhman, M., Nordin, A., Skrifvars, B.-J., Backman, R., Hupa, M.: Bed agglomeration characteristics during fluidized bed combustion of biomass fuels. Energy Fuels 14(1), 169–178 (2000). doi:10.1021/ef990107b
Keller, J.K.-K., Konijnendijk, C.C.: A comparative analysis of municipal tree inventories of selected major cities in North America and Europe: short communication. Arboric. Urban For. 38(1), 24–30 (2012)
ICU, Ingenieurconsulting Umwelt und Bau: Hochwertige und klimaschonende Verwertung von Mähgut und Laub im Land Berlin, Endbericht (2011)
Britt, C., Johnston, M.: Trees in Towns II. A new survey of urban trees in England and their conditions and management. Research for Amenity Trees, 9. http://committeeadmin.lancaster.gov.uk/documents/s21579/Appx2_TreesInTowns.pdf (2008). Accessed 14 July 2015
Strohbach, M.W., Haase, D.: Above-ground carbon storage by urban trees in Leipzig, Germany: analysis of patterns in a European city. Landsc. Urban Plan. 104(1), 95–104 (2012). doi:10.1016/j.landurbplan.2011.10.001