Chemical Effects of CeLγ4 Emission Spectra for Ce Compounds
Tóm tắt
High-resolution CeLγ4 emission spectra of CeF3, Ce2S3, CeF4, and CeO2 have been measured using a multicrystal, multidetector spectrometer. The spectra exhibited substantial differences depending on the chemical environment of the Ce ions. By comparing the observed CeO2 spectrum with the band calculations, we determined that the observed chemical effects of the main emission line were primarily attributable to the transitions of the Ce5p band; the high-energy tail at around 6.539 keV was assigned to the ligand p→Ce2s cross transition. Further, a key difference between CeLγ4 and EuLγ4 is discussed with reference to CeL1- and EuL1-X-ray absorption fine-structures (XAFS). Possible applications of CeLγ4 emissions to material characterization are also suggested.
Tài liệu tham khảo
B. K. Agarwal, “X-Ray Spectroscopy,” 1989, Springer-Verlag, New York.
A. A. Markowicz, “Handbook of X-Ray Spectrometry,” ed. R. E. Van Grieken and A. A. Markowicz, 2002, Marcel Dekker, New York.
H. Hayashi, N. Kawamura, M. Mizumaki, and T. Takabatake, Anal. Chem., 2009, 81, 1522.
H. Hayashi, N. Kawamura, M. Mizumaki, T. Takabatake, H. Imura, K. Okamoto, and T. Akai, J. Phys. Conference Series, 2009, 190, 012050.
H. Hayashi, Anal. Sci., 2008, 24, 15.
H. Hayashi, T. Azumi, A. Sato, and Y. Udagawa, J. Electron Spectrosc. Relat. Phenom., 2008, 168, 34.
U. Bergmann and S. P. Cramer, SPIE Proc., 1998, 3448, 198.
H. Hayashi, M. Kawata, R. Takeda, Y. Udagawa, Y. Watanabe, T. Takano, S. Nanao, and N. Kawamura, J. Electron Spectrosc. Relat. Phenom., 2004, 136, 191.
P. Blaha, K. Schartz, P. Sorantin, and S. B. Trickey, Comput. Phys. Commun., 1990, 59, 399.
P. Blaha, K. Schwarz, G. Madsen, D. Kvasnicka, and J. Luitz, http://www.wien2k.at/.
G.-Z. Shi, K. Fujisawa, T. Konishi, S. Fukushima, A. Iida, and Y. Gohshi, Adv. X-ray Chem. Anal. Jpn. (in Japanese), 1986, 18, 181.
M. Ohno and R. E. LaVilla, Phys. Rev. B, 1989, 39, 8852.
F. M. F. de Groot and A. Kotani, “Core Level Spectroscopy of Solids,” 2008, Taylor and Francis, New York.
X. Wang, F. M. F. de Groot, and S. P. Cramer, Phys. Rev. B, 1997, 56, 4553.
P. Glatzel, U. Bergmann, J. Yano, H. Visser, J. H. Robblee, W. W. Gu, F. M. F. de Groot, G. Christou, V. L. Pecoraro, S. P. Cramer, and V. K. Yachandra, J. Am. Chem. Soc., 2005, 126, 9946.
G. Vanko, T. Neisius, G. Molnar, F. Renz, S. Karpati, A. Shukla, and F. M. F. de Groot, J. Phys. Chem., 2006, 110, 11647.
U. Bergmann, C. R. Horne, T. J. Collins, J. M. Workman, and S. P. Cramer, Chem. Phys. Lett., 1999, 302, 119.
P. Glatzel, G. Smolentsev, and G. Bunker, J. Phys. Conference Series, 2009, 190, 012046.
M. Magnuson, S. M. Butorin, J.-H. Guo, A. Agui, J. Nordgren, H. Ogasawara, A. Kotani, T. Takahashi, and S. Kunii, Phys. Rev. B, 2001, 63, 075101.
K. Tanaka, Y. Kato, and Y. Onuki, Acta Crystallogr., 1997, B53, 143.