Chemical Bonding of Transition‐Metal Co13 Clusters with Graphene

ChemPhysChem - Tập 16 Số 17 - Trang 3700-3710 - 2015
Tomás Alonso-Lanza1, A. Ayuela1, F. Aguilera‐Granja1,2
1Centro de Física de Materiales CFM-MPC CSIC-UPV/EHU Donostia International Physics Center (DIPC) Departamento de Física de Materiales Fac. de Químicas UPV-EHU 20018 San Sebastián Spain
2Instituto de Física Universidad Autónoma de San Luis de Potosí 78000 San Luis Potosí S.L.P. México

Tóm tắt

AbstractWe carried out density functional calculations to study the adsorption of Co13 clusters on graphene. Several free isomers were deposited at different positions with respect to the hexagonal lattice nodes, allowing us to study even the hcp 2d isomer, which was recently obtained as the most stable one. Surprisingly, the Co13 clusters attached to graphene prefer icosahedron‐like structures in which the low‐lying isomer is much distorted; in such structures, they are linked with more bonds than those reported in previous works. For any isomer, the most stable position binds to graphene by the Co atoms that can lose electrons. We find that the charge transfer between graphene and the clusters is small enough to conclude that the Co–graphene binding is not ionic‐like but chemical. Besides, the same order of stability among the different isomers on doped graphene is kept. These findings could also be of interest for magnetic clusters on graphenic nanostructures such as ribbons and nanotubes.

Từ khóa


Tài liệu tham khảo

10.1126/science.1102896

10.1103/RevModPhys.81.109

10.1038/nature11458

10.1016/j.carbon.2010.01.058

10.1016/j.pmatsci.2011.03.003

10.1126/science.1220527

10.1038/nnano.2010.89

10.1038/nature06037

10.1109/TMAG.2006.878852

10.1063/1.2784934

10.1103/PhysRevLett.99.177204

10.1038/nature05180

10.1103/PhysRevB.75.125408

10.1103/PhysRevLett.91.017202

10.1088/1367-2630/12/11/113021

10.1038/srep02599

10.1038/nphys1807

10.1103/PhysRevB.80.045428

10.1088/0953-8984/22/31/316005

10.1126/science.287.5460.1989

10.1103/PhysRevLett.103.187201

10.1021/cr980391o

10.1103/PhysRevLett.75.326

10.1103/PhysRevB.40.7642

10.1103/PhysRevLett.90.226402

10.1103/PhysRevB.55.13283

10.1103/PhysRevB.78.134425

10.1103/PhysRevB.70.045416

10.1103/PhysRevLett.76.1441

10.1103/PhysRevLett.71.4067

10.1103/PhysRevB.67.174413

10.1103/PhysRevB.76.014429

10.1103/PhysRevB.73.115422

10.1103/PhysRevB.64.104429

10.1088/1367-2630/4/1/398

10.1103/PhysRevLett.89.057201

10.1088/0953-8984/20/11/115209

10.1103/PhysRevB.81.205424

10.1103/PhysRevB.84.235110

10.1103/PhysRevB.81.035403

10.1103/PhysRevB.80.085417

10.1016/j.susc.2009.11.001

10.1103/PhysRevB.83.235415

10.1021/jp2110117

10.1021/nn1017395

10.1021/jp2012914

10.1039/C1DT11186H

10.1021/jp203274a

10.1021/nl103980h

10.1103/PhysRevB.84.085430

10.1103/PhysRevLett.110.136804

10.1103/PhysRevB.80.075406

10.1088/1367-2630/12/10/103040

10.1002/smll.200700929

10.1021/cm501976b

10.1103/PhysRevB.81.115427

10.1103/PhysRevB.86.241406

10.1103/PhysRevB.81.125433

10.1063/1.4893328

10.1016/j.commatsci.2014.09.033

10.1088/1367-2630/17/5/053052

10.1021/acs.jpcc.5b02358

10.1103/PhysRevB.90.155444

10.1002/andp.201400079

10.1007/s11051-013-1562-0

10.1039/C4RA07996E

10.1021/jp410262t

10.1103/PhysRevLett.66.3052

10.1140/epjd/e2010-00018-7

10.1016/j.physe.2012.08.011

10.1016/j.chemphys.2012.12.037

10.1103/PhysRevLett.93.133401

10.1103/PhysRevLett.95.237209

10.1016/j.elspec.2010.12.031

10.1103/PhysRevB.83.205408

10.1063/1.451753

10.1103/PhysRevLett.65.625

10.1063/1.1141103

10.1016/0009-2614(87)80279-8

10.1063/1.469330

10.1103/PhysRevLett.77.3865

10.1103/PhysRevB.43.1993

10.1098/rspa.1951.0132