Chelatases: distort to select?

Trends in Biochemical Sciences - Tập 31 - Trang 135-142 - 2006
Salam Al-Karadaghi1, Ricardo Franco2, Mats Hansson1, John A. Shelnutt3,4, Grazia Isaya5, Gloria C. Ferreira6
1Department of Molecular Biophysics and Department of Biochemistry, Lund University, Box 124, SE-22100 Lund, Sweden
2REQUIMTE, Centro de Química Fina e Biotecnologia, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
3Surface and Interface Sciences Department, Sandia National Laboratories, Albuquerque, NM 87185-1349, USA
4Department of Chemistry, University of Georgia, Athens, GA 30602-2556, USA
5Departments of Pediatric & Adolescent Medicine and Biochemistry & Molecular Biology, Mayo Clinic College of Medicine, Rochester, MN 55905, USA
6Department of Biochemistry and Molecular Biology, College of Medicine, and H. Lee Moffitt Cancer Center and Research Institute, University of South Florida, Tampa, FL 33612-4799, USA

Tài liệu tham khảo

Dioum, 2002, NPAS2: a gas-responsive transcription factor, Science, 298, 2385, 10.1126/science.1078456 Kaasik, 2004, Reciprocal regulation of haem biosynthesis and the circadian clock in mammals, Nature, 430, 467, 10.1038/nature02724 Roberts, 2004, CO-sensing mechanisms, Microbiol. Mol. Biol. Rev., 68, 453, 10.1128/MMBR.68.3.453-473.2004 Rodgers, 1999, Heme-based sensors in biological systems, Curr. Opin. Chem. Biol., 3, 158, 10.1016/S1367-5931(99)80028-3 Al-Karadaghi, 1997, Crystal structure of ferrochelatase: the terminal enzyme in heme biosynthesis, Structure, 5, 1501, 10.1016/S0969-2126(97)00299-2 Brindley, 2003, A story of chelatase evolution: identification and characterization of a small 13–15-kDa “ancestral” cobaltochelatase (CbiXS) in the Archaea, J. Biol. Chem., 278, 22388, 10.1074/jbc.M302468200 Raux-Deery, 2005, Identification and characterization of the terminal enzyme of siroheme biosynthesis from Arabidopsis thaliana: a plastid-located sirohydrochlorin ferrochelatase containing a 2Fe–2S center, J. Biol. Chem., 280, 4713, 10.1074/jbc.M411360200 Stroupe, 2003, CysG structure reveals tetrapyrrole-binding features and novel regulation of siroheme biosynthesis, Nat. Struct. Biol., 10, 1064, 10.1038/nsb1007 Willows, 2003, Mechanism, structure and regulation of magnesium chelatase, 1 Fleischer, 1977, Definitive evidence for the existence of the “sitting-atop” porphyrin complexes in nonaqueous solutions, Bioinorg. Chem., 7, 129, 10.1016/S0006-3061(00)80063-0 Hambright, 1974, Metal–porphyrin interactions. III. A dissociative-interchange mechanism for metal ion incorporation into porphyrin molecules, J. Am. Chem. Soc., 96, 3123, 10.1021/ja00817a018 Inamo, 2001, Structural characterization and formation kinetics of sitting-atop (SAT) complexes of some porphyrins with copper(ii) ion in aqueous acetonitrile relevant to porphyrin metalation mechanism. Structures of aquacopper(ii) and Cu(ii)–SAT complexes as determined by XAFS spectroscopy, Inorg. Chem., 40, 5636, 10.1021/ic010162b Lavallee, 1988, Porphyrin metallation reactions in biochemistry, Mol. Struct. Energ., 9, 279 Shen, 2005, Reaction mechanism of porphyrin metallation studied by theoretical methods, Chemistry, 11, 1549, 10.1002/chem.200400298 Sigfridsson, 2003, The importance of porphyrin distortions for the ferrochelatase reaction, J. Biol. Inorg. Chem., 8, 273, 10.1007/s00775-002-0413-8 Dailey, 2003, Ferrochelatase, 93 Koshland, 1958, Application of a theory of enzyme specificity to protein synthesis, Proc. Natl. Acad. Sci. U. S. A., 44, 98, 10.1073/pnas.44.2.98 Romesberg, 1998, Structural and kinetic evidence for strain in biological catalysis, Biochemistry, 37, 14404, 10.1021/bi981578c Yin, 2003, Structural evidence for substrate strain in antibody catalysis, Proc. Natl. Acad. Sci. U. S. A., 100, 856, 10.1073/pnas.0235873100 Lecerof, 2000, Structural and mechanistic basis of porphyrin metallation by ferrochelatase, J. Mol. Biol., 297, 221, 10.1006/jmbi.2000.3569 Venkateshrao, 2004, Porphyrin distortion during affinity maturation of a ferrochelatase antibody, monitored by resonance Raman spectroscopy, J. Am. Chem. Soc., 126, 16361, 10.1021/ja0465395 Yin, 2003, Structural plasticity and the evolution of antibody affinity and specificity, J. Mol. Biol., 330, 651, 10.1016/S0022-2836(03)00631-4 Phillips, 2003, Structural basis for tetrapyrrole coordination by uroporphyrinogen decarboxylase, EMBO J., 22, 6225, 10.1093/emboj/cdg606 Schubert, 2002, The structure of Saccharomyces cerevisiae Met8p, a bifunctional dehydrogenase and ferrochelatase, EMBO J., 21, 2068, 10.1093/emboj/21.9.2068 Blackwood, 1998, Alternative modes of substrate distortion in enzyme and antibody catalyzed ferrochelation reactions, Biochemistry, 37, 779, 10.1021/bi972616f Franco, 2000, Porphyrin interactions with wild-type and mutant mouse ferrochelatase, Biochemistry, 39, 2517, 10.1021/bi991346t Lu, 2002, Binding of protoporphyrin IX and metal derivatives to the active site of wild-type mouse ferrochelatase at low porphyrin-to-protein ratios, Biochemistry, 41, 8253, 10.1021/bi025569m Hansson, 1994, Purification and characterisation of a water-soluble ferrochelatase from Bacillus subtilis, Eur. J. Biochem., 220, 201, 10.1111/j.1432-1033.1994.tb18615.x Ferreira, 2002, Unraveling the substrate–metal binding site of ferrochelatase: an X-ray absorption spectroscopic study, Biochemistry, 41, 4809, 10.1021/bi015814m Franco, 1995, Characterization of the iron-binding site in mammalian ferrochelatase by kinetic and Mössbauer methods, J. Biol. Chem., 270, 26352, 10.1074/jbc.270.44.26352 Kohno, 1994, Site-directed mutagenesis of human ferrochelatase: identification of histidine-263 as a binding site for metal ions, Biochim. Biophys. Acta, 1209, 95, 10.1016/0167-4838(94)90142-2 Gora, 1996, Probing the active-site residues in Saccharomyces cerevisiae ferrochelatase by directed mutagenesis. In vivo and in vitro analyses, J. Biol. Chem., 271, 11810, 10.1074/jbc.271.20.11810 Karlberg, 2002, Metal binding to Saccharomyces cerevisiae ferrochelatase, Biochemistry, 41, 13499, 10.1021/bi0260785 Lecerof, 2003, Metal binding to Bacillus subtilis ferrochelatase and interaction between metal sites, J. Biol. Inorg. Chem., 8, 452, 10.1007/s00775-002-0436-1 Wu, 2001, The 2.0 A structure of human ferrochelatase, the terminal enzyme of heme biosynthesis, Nat. Struct. Biol., 8, 156, 10.1038/84152 Fodje, 2002, Occurrence, conformational features and amino acid propensities for the π-helix, Protein Eng., 15, 353, 10.1093/protein/15.5.353 Shipovskov, 2005, Metallation of the transition-state inhibitor N-methyl mesoporphyrin by ferrochelatase: implications for the catalytic reaction mechanism, J. Mol. Biol., 352, 1081, 10.1016/j.jmb.2005.08.002 Jencks, 1969 Jencks, 1975, Binding energy, specificity, and enzymic catalysis: the circe effect, Adv. Enzymol. Relat. Areas Mol. Biol., 43, 219 Koch, 2004, Crystal structure of protoporphyrinogen IX oxidase: a key enzyme in haem and chlorophyll biosynthesis, EMBO J., 23, 1720, 10.1038/sj.emboj.7600189 Ferreira, 1988, Organization of the terminal two enzymes of the heme biosynthetic pathway. Orientation of protoporphyrinogen oxidase and evidence for a membrane complex, J. Biol. Chem., 263, 3835, 10.1016/S0021-9258(18)69000-3 Bulteau, 2004, Frataxin acts as an iron chaperone protein to modulate mitochondrial aconitase activity, Science, 305, 242, 10.1126/science.1098991 Park, 2003, Yeast frataxin sequentially chaperones and stores iron by coupling protein assembly with iron oxidation, J. Biol. Chem., 278, 31340, 10.1074/jbc.M303158200 Yoon, 2003, Iron–sulfur cluster biosynthesis. Characterization of frataxin as an iron donor for assembly of [2Fe–2S] clusters in ISU-type proteins, J. Am. Chem. Soc., 125, 6078, 10.1021/ja027967i O'Neill, 2005, Assembly of human frataxin is a mechanism for detoxifying redox-active iron, Biochemistry, 44, 537, 10.1021/bi048459j Patel, 2001, Friedreich ataxia: from GAA triplet-repeat expansion to frataxin deficiency, Am. J. Hum. Genet., 69, 15, 10.1086/321283 Muhlenhoff, 2002, The yeast frataxin homolog Yfh1p plays a specific role in the maturation of cellular Fe/S proteins, Hum. Mol. Genet., 11, 2025, 10.1093/hmg/11.17.2025 Schoenfeld, 2005, Frataxin deficiency alters heme pathway transcripts and decreases mitochondrial heme metabolites in mammalian cells, Hum. Mol. Genet., 14, 3787, 10.1093/hmg/ddi393 Zhang, 2005, Frataxin and mitochondrial carrier proteins, Mrs3p and Mrs4p, cooperate in providing iron for heme synthesis, J. Biol. Chem., 280, 19794, 10.1074/jbc.M500397200 Lesuisse, 2003, Iron use for haeme synthesis is under control of the yeast frataxin homologue (Yfh1), Hum. Mol. Genet., 12, 879, 10.1093/hmg/ddg096 Yoon, 2004, Frataxin-mediated iron delivery to ferrochelatase in the final step of heme biosynthesis, J. Biol. Chem., 279, 25943, 10.1074/jbc.C400107200 Dhe-Paganon, 2000, Crystal structure of human frataxin, J. Biol. Chem., 275, 30753, 10.1074/jbc.C000407200 He, 2004, Yeast frataxin solution structure, iron binding, and ferrochelatase interaction, Biochemistry, 43, 16254, 10.1021/bi0488193