Chelatases: distort to select?
Tài liệu tham khảo
Dioum, 2002, NPAS2: a gas-responsive transcription factor, Science, 298, 2385, 10.1126/science.1078456
Kaasik, 2004, Reciprocal regulation of haem biosynthesis and the circadian clock in mammals, Nature, 430, 467, 10.1038/nature02724
Roberts, 2004, CO-sensing mechanisms, Microbiol. Mol. Biol. Rev., 68, 453, 10.1128/MMBR.68.3.453-473.2004
Rodgers, 1999, Heme-based sensors in biological systems, Curr. Opin. Chem. Biol., 3, 158, 10.1016/S1367-5931(99)80028-3
Al-Karadaghi, 1997, Crystal structure of ferrochelatase: the terminal enzyme in heme biosynthesis, Structure, 5, 1501, 10.1016/S0969-2126(97)00299-2
Brindley, 2003, A story of chelatase evolution: identification and characterization of a small 13–15-kDa “ancestral” cobaltochelatase (CbiXS) in the Archaea, J. Biol. Chem., 278, 22388, 10.1074/jbc.M302468200
Raux-Deery, 2005, Identification and characterization of the terminal enzyme of siroheme biosynthesis from Arabidopsis thaliana: a plastid-located sirohydrochlorin ferrochelatase containing a 2Fe–2S center, J. Biol. Chem., 280, 4713, 10.1074/jbc.M411360200
Stroupe, 2003, CysG structure reveals tetrapyrrole-binding features and novel regulation of siroheme biosynthesis, Nat. Struct. Biol., 10, 1064, 10.1038/nsb1007
Willows, 2003, Mechanism, structure and regulation of magnesium chelatase, 1
Fleischer, 1977, Definitive evidence for the existence of the “sitting-atop” porphyrin complexes in nonaqueous solutions, Bioinorg. Chem., 7, 129, 10.1016/S0006-3061(00)80063-0
Hambright, 1974, Metal–porphyrin interactions. III. A dissociative-interchange mechanism for metal ion incorporation into porphyrin molecules, J. Am. Chem. Soc., 96, 3123, 10.1021/ja00817a018
Inamo, 2001, Structural characterization and formation kinetics of sitting-atop (SAT) complexes of some porphyrins with copper(ii) ion in aqueous acetonitrile relevant to porphyrin metalation mechanism. Structures of aquacopper(ii) and Cu(ii)–SAT complexes as determined by XAFS spectroscopy, Inorg. Chem., 40, 5636, 10.1021/ic010162b
Lavallee, 1988, Porphyrin metallation reactions in biochemistry, Mol. Struct. Energ., 9, 279
Shen, 2005, Reaction mechanism of porphyrin metallation studied by theoretical methods, Chemistry, 11, 1549, 10.1002/chem.200400298
Sigfridsson, 2003, The importance of porphyrin distortions for the ferrochelatase reaction, J. Biol. Inorg. Chem., 8, 273, 10.1007/s00775-002-0413-8
Dailey, 2003, Ferrochelatase, 93
Koshland, 1958, Application of a theory of enzyme specificity to protein synthesis, Proc. Natl. Acad. Sci. U. S. A., 44, 98, 10.1073/pnas.44.2.98
Romesberg, 1998, Structural and kinetic evidence for strain in biological catalysis, Biochemistry, 37, 14404, 10.1021/bi981578c
Yin, 2003, Structural evidence for substrate strain in antibody catalysis, Proc. Natl. Acad. Sci. U. S. A., 100, 856, 10.1073/pnas.0235873100
Lecerof, 2000, Structural and mechanistic basis of porphyrin metallation by ferrochelatase, J. Mol. Biol., 297, 221, 10.1006/jmbi.2000.3569
Venkateshrao, 2004, Porphyrin distortion during affinity maturation of a ferrochelatase antibody, monitored by resonance Raman spectroscopy, J. Am. Chem. Soc., 126, 16361, 10.1021/ja0465395
Yin, 2003, Structural plasticity and the evolution of antibody affinity and specificity, J. Mol. Biol., 330, 651, 10.1016/S0022-2836(03)00631-4
Phillips, 2003, Structural basis for tetrapyrrole coordination by uroporphyrinogen decarboxylase, EMBO J., 22, 6225, 10.1093/emboj/cdg606
Schubert, 2002, The structure of Saccharomyces cerevisiae Met8p, a bifunctional dehydrogenase and ferrochelatase, EMBO J., 21, 2068, 10.1093/emboj/21.9.2068
Blackwood, 1998, Alternative modes of substrate distortion in enzyme and antibody catalyzed ferrochelation reactions, Biochemistry, 37, 779, 10.1021/bi972616f
Franco, 2000, Porphyrin interactions with wild-type and mutant mouse ferrochelatase, Biochemistry, 39, 2517, 10.1021/bi991346t
Lu, 2002, Binding of protoporphyrin IX and metal derivatives to the active site of wild-type mouse ferrochelatase at low porphyrin-to-protein ratios, Biochemistry, 41, 8253, 10.1021/bi025569m
Hansson, 1994, Purification and characterisation of a water-soluble ferrochelatase from Bacillus subtilis, Eur. J. Biochem., 220, 201, 10.1111/j.1432-1033.1994.tb18615.x
Ferreira, 2002, Unraveling the substrate–metal binding site of ferrochelatase: an X-ray absorption spectroscopic study, Biochemistry, 41, 4809, 10.1021/bi015814m
Franco, 1995, Characterization of the iron-binding site in mammalian ferrochelatase by kinetic and Mössbauer methods, J. Biol. Chem., 270, 26352, 10.1074/jbc.270.44.26352
Kohno, 1994, Site-directed mutagenesis of human ferrochelatase: identification of histidine-263 as a binding site for metal ions, Biochim. Biophys. Acta, 1209, 95, 10.1016/0167-4838(94)90142-2
Gora, 1996, Probing the active-site residues in Saccharomyces cerevisiae ferrochelatase by directed mutagenesis. In vivo and in vitro analyses, J. Biol. Chem., 271, 11810, 10.1074/jbc.271.20.11810
Karlberg, 2002, Metal binding to Saccharomyces cerevisiae ferrochelatase, Biochemistry, 41, 13499, 10.1021/bi0260785
Lecerof, 2003, Metal binding to Bacillus subtilis ferrochelatase and interaction between metal sites, J. Biol. Inorg. Chem., 8, 452, 10.1007/s00775-002-0436-1
Wu, 2001, The 2.0 A structure of human ferrochelatase, the terminal enzyme of heme biosynthesis, Nat. Struct. Biol., 8, 156, 10.1038/84152
Fodje, 2002, Occurrence, conformational features and amino acid propensities for the π-helix, Protein Eng., 15, 353, 10.1093/protein/15.5.353
Shipovskov, 2005, Metallation of the transition-state inhibitor N-methyl mesoporphyrin by ferrochelatase: implications for the catalytic reaction mechanism, J. Mol. Biol., 352, 1081, 10.1016/j.jmb.2005.08.002
Jencks, 1969
Jencks, 1975, Binding energy, specificity, and enzymic catalysis: the circe effect, Adv. Enzymol. Relat. Areas Mol. Biol., 43, 219
Koch, 2004, Crystal structure of protoporphyrinogen IX oxidase: a key enzyme in haem and chlorophyll biosynthesis, EMBO J., 23, 1720, 10.1038/sj.emboj.7600189
Ferreira, 1988, Organization of the terminal two enzymes of the heme biosynthetic pathway. Orientation of protoporphyrinogen oxidase and evidence for a membrane complex, J. Biol. Chem., 263, 3835, 10.1016/S0021-9258(18)69000-3
Bulteau, 2004, Frataxin acts as an iron chaperone protein to modulate mitochondrial aconitase activity, Science, 305, 242, 10.1126/science.1098991
Park, 2003, Yeast frataxin sequentially chaperones and stores iron by coupling protein assembly with iron oxidation, J. Biol. Chem., 278, 31340, 10.1074/jbc.M303158200
Yoon, 2003, Iron–sulfur cluster biosynthesis. Characterization of frataxin as an iron donor for assembly of [2Fe–2S] clusters in ISU-type proteins, J. Am. Chem. Soc., 125, 6078, 10.1021/ja027967i
O'Neill, 2005, Assembly of human frataxin is a mechanism for detoxifying redox-active iron, Biochemistry, 44, 537, 10.1021/bi048459j
Patel, 2001, Friedreich ataxia: from GAA triplet-repeat expansion to frataxin deficiency, Am. J. Hum. Genet., 69, 15, 10.1086/321283
Muhlenhoff, 2002, The yeast frataxin homolog Yfh1p plays a specific role in the maturation of cellular Fe/S proteins, Hum. Mol. Genet., 11, 2025, 10.1093/hmg/11.17.2025
Schoenfeld, 2005, Frataxin deficiency alters heme pathway transcripts and decreases mitochondrial heme metabolites in mammalian cells, Hum. Mol. Genet., 14, 3787, 10.1093/hmg/ddi393
Zhang, 2005, Frataxin and mitochondrial carrier proteins, Mrs3p and Mrs4p, cooperate in providing iron for heme synthesis, J. Biol. Chem., 280, 19794, 10.1074/jbc.M500397200
Lesuisse, 2003, Iron use for haeme synthesis is under control of the yeast frataxin homologue (Yfh1), Hum. Mol. Genet., 12, 879, 10.1093/hmg/ddg096
Yoon, 2004, Frataxin-mediated iron delivery to ferrochelatase in the final step of heme biosynthesis, J. Biol. Chem., 279, 25943, 10.1074/jbc.C400107200
Dhe-Paganon, 2000, Crystal structure of human frataxin, J. Biol. Chem., 275, 30753, 10.1074/jbc.C000407200
He, 2004, Yeast frataxin solution structure, iron binding, and ferrochelatase interaction, Biochemistry, 43, 16254, 10.1021/bi0488193