Charting the complete elastic properties of inorganic crystalline compounds

Scientific data - Tập 2 Số 1
Maarten de Jong1, Wei Chen2, Thomas Angsten1, Anubhav Jain2, Randy Notestine3, Anthony Gamst3, Marcel H. F. Sluiter4, Chaitanya Krishna Ande5, Sybrand van der Zwaag6, José J. Plata7, Cormac Toher7, Stefano Curtarolo8, Gerbrand Ceder9, Kristin A. Persson2, Mark Asta1
1Department of Materials Science and Engineering, University of California, Berkeley, 94720, California, USA
2Environmental Energy Technologies Division, Lawrence Berkeley National Laboratory, Berkeley, 94720, California, USA
3Computational and Applied Statistics Laboratory, San Diego Supercomputer Center, University of California, San Diego, 92093, California, USA
4Department of Materials Science 3ME, Delft University of Technology, Delft, 2628CD, The Netherlands
5Department of Applied Physics, Eindhoven University of Technology, Eindhoven, 5600MB, The Netherlands
6Department of Aerospace Engineering, Delft University of Technology, Delft, 2629HS, The Netherlands
7Department of Mechanical Engineering and Materials Science, Center for Materials Genomics, Duke University, Durham, 27708, North Carolina, USA
8Center for Materials Genomics, Materials Science, Electrical Engineering, Physics and Chemistry, Duke University, Durham, 27708, North Carolina, USA
9Department of Materials Science and Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, 02139, Massachusetts, USA

Tóm tắt

AbstractThe elastic constant tensor of an inorganic compound provides a complete description of the response of the material to external stresses in the elastic limit. It thus provides fundamental insight into the nature of the bonding in the material, and it is known to correlate with many mechanical properties. Despite the importance of the elastic constant tensor, it has been measured for a very small fraction of all known inorganic compounds, a situation that limits the ability of materials scientists to develop new materials with targeted mechanical responses. To address this deficiency, we present here the largest database of calculated elastic properties for inorganic compounds to date. The database currently contains full elastic information for 1,181 inorganic compounds, and this number is growing steadily. The methods used to develop the database are described, as are results of tests that establish the accuracy of the data. In addition, we document the database format and describe the different ways it can be accessed and analyzed in efforts related to materials discovery and design.

Từ khóa


Tài liệu tham khảo

Pettifor, D. Theoretical predictions of structure and related properties of intermetallics. Mater. Sci. Technol. 8, 345–349 (1992).

Pugh, S. XCII. Relations between the elastic moduli and the plastic properties of polycrystalline pure metals. Philos. Mag. 45, 823–843 (1954).

Niu, H. et al. Extra-electron induced covalent strengthening and generalization of intrinsic ductile-to-brittle criterion. Sci. Rep. 2, 718–723 (2012).

Gschneidner, K. et al. A family of ductile intermetallic compounds. Nat. Mater. 2, 587–591 (2003).

Greaves, G. N., Greer, A., Lakes, R. & Rouxel, T. Poisson’s ratio and modern materials. Nat. Mater. 10, 823–837 (2011).

De Jong, M., Olmsted, D. L., van de Walle, A. & Asta, M. First-principles study of the structural and elastic properties of rhenium-based transition-metal alloys. Phys. Rev. B 86, 224101 (2012).

De Jong, M., van der Zwaag, S. & Sluiter, M. Ab-initio modeling of metastable precipitation processes in aluminum 7xxx alloys. Int. J. Mater. Res. 103, 972–979 (2012).

Mao, Z., Chen, W., Seidman, D. N. & Wolverton, C. First-principles study of the nucleation and stability of ordered precipitates in ternary Al-Sc-Li alloys. Acta Mater. 59, 3012–3023 (2011).

De Jong, M. et al. First-principles and genetic modelling of precipitation sequences in aluminium alloys. Solid State Phenom. 172, 285–290 (2011).

Snyder, G. J. & Toberer, E. S. Complex thermoelectric materials. Nat. Mater. 7, 105–114 (2008).

Cahill, D. G., Watson, S. K. & Pohl, R. O. Lower limit to the thermal conductivity of disordered crystals. Phys. Rev. B 46, 6131 (1992).

Clarke, D. R. Materials selection guidelines for low thermal conductivity thermal barrier coatings. Surf. Coat. Technol. 163, 67–74 (2003).

Feng, J. et al. Stability, thermal and mechanical properties of PtAl compounds. Mater. Des. 32, 3231–3239 (2011).

Hashin, Z. & Shtrikman, S. A variational approach to the theory of the elastic behaviour of multiphase materials. J. Mech. Phys. Solids 11, 127–140 (1963).

Zohdi, T. I. & Wriggers, P. Aspects of the computational testing of the mechanical properties of microheterogeneous material samples. Int. J. Numer. Methods Eng. 50, 2573–2599 (2001).

Karki, B. B., Stixrude, L. & Wentzcovitch, R. M. High-pressure elastic properties of major materials of Earth’s mantle from first principles. Rev. Geophys. 39, 507–534 (2001).

Anderson, O. L., Schreiber, E., Liebermann, R. C. & Soga, N. Some elastic constant data on minerals relevant to geophysics. Rev. Geophys. 6, 491–524 (1968).

Nelson, D. Landolt-Börnstein, Numerical data and functional relationships in science and technology, group III/Vol 29a (1992).

Gale, W. F. & Totemeier, T. C . Smithells metals reference book. (Butterworth-Heinemann, 2003).

Simmons, G. & Wang, H . Single crystal elastic constants and calculated aggregate properties: a handbook (Massachusetts Institute of Technology: Cambridge, Massachusetts, 1971).

Hearmon, R. F. S. The elastic constants of anisotropic materials. Rev. Mod. Phys. 18, 409 (1946).

Tanaka, K. & Koiwa, M. Single-crystal elastic constants of intermetallic compounds. Intermetallics 4, S29–S39 (1996).

Nakamura, M. Elastic constants of some transition-metal-disilicide single crystals. Metall. Mater. Trans. A 25, 331–340 (1994).

Schiltz Jr., R. J. . & Smith, J. F. Elastic constants of some MAl2 single crystals. J. Appl. Phys. 45, 4681–4685 (1974).

Varshni, Y. Temperature dependence of the elastic constants. Phys. Rev. B 2, 3952 (1970).

Yasuda, H., Takasugi, T. & Koiwa, M. Elasticity of Ni-based L12-type intermetallic compounds. Acta Metall. Mater 40, 381–387 (1992).

Taylor, P. Crystallographic databases edited by F. H. Allen, G. Gergerhoff and R. Sievers. Acta Crystallogr., Sect. C: Cryst. Struct. Commun. 44, 1153–1154 (1988).

Belsky, A., Hellenbrandt, M., Karen, V. L. & Luksch, P. New developments in the inorganic crystal structure database (ICSD): accessibility in support of materials research and design. Acta Crystallogr., Sect. B: Struct. Sci. 58, 364–369 (2002).

Setyawan, W., Gaume, R. M., Lam, S., Feigelson, R. S. & Curtarolo, S. High-throughput combinatorial database of electronic band structures for inorganic scintillator materials. ACS Comb. Sci. 13, 382–390 (2011).

Beg, M. M. & Shapiro, S. M. Study of phonon dispersion relations in cuprous oxide by inelastic neutron scattering. Phys. Rev. B 13, 1728–1734 (1976).

Du Plessis, P. de V., van Tonder, S. J. & Alberts, L. Elastic constants of a NiO single crystal: I (Magnetic transitions). J. Phys. C: Solid State Phys. 4, 1983–1987 (1971).

Uchida, N. & Saito, S. Elastic constants and acoustic absorption coefficients in MnO, CoO, and NiO single crystals at room temperature. J. Acoust. Soc. Am. 51, 1602–1605 (1972).

Shang, S., Wang, Y. & Liu, Z.-K. First-principles elastic constants of α and θ-Al2O3. Appl. Phys. Lett. 90, 101909-1:3 (2007).

Da Silveira, P. R. C., da Silva, C. R. S. & Wentzcovitch, R. M. Metadata management for distributed first principles calculations in Vlab-a collaborative cyberinfrastructure for materials computation. Comput. Phys. Commun. 178, 186–198 (2008).

Da Silva, C. R. S. et al. Virtual laboratory for planetary materials: System service architecture overview. Phys. Earth Planet. Inter. 163, 321–332 (2007).

Curtarolo, S. et al. The high-throughput highway to computational materials design. Nat. Mater. 12, 191–201 (2013).

Jain, A. et al. Commentary: The Materials Project: A materials genome approach to accelerating materials innovation. APL Mater 1, 011002 (2013).

Morgan, D., Ceder, G. & Curtarolo, S. High-throughput and data mining with ab initio methods. Meas. Sci. Technol. 16, 296 (2005).

The Materials Project. https://materialsproject.org/. Accessed: 2014-09-30.

IEEE standard on piezoelectricity. ANSI/IEEE Std 176-1987, 0–1 (1988).

Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 50, 17953–17979 (1994).

Kresse, G. & Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 59, 1758–1775 (1999).

Kresse, G. & Hafner, J. Ab initio molecular dynamics for liquid metals. Phys. Rev. B 47, 558–561 (1993).

Kresse, G. & Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169–11186 (1996).

Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865 (1996).

Anisimov, V. I., Zaanen, J. & Andersen, O. K. Band theory and Mott insulators: Hubbard U instead of Stoner I. Phys. Rev. B 44, 943 (1991).

Dudarev, S. L., Botton, G. A., Savrasov, S. Y., Humphreys, C. J. & Sutton, A. P. Electron-energy-loss spectra and the structural stability of nickel oxide: An LSDA+U study. Phys. Rev. B 57, 1505 (1998).

Michael, J., Mehl, B. M. K. & Papaconstantopoulos, D. A. Intermetallic Compounds: Principles and Practice vol. 1, chap. 9 (John Wiley and Sons, 1994).

Born, M. & Huang, K. Dynamical Theory of Crystal Lattices Oxford Classic Texts in the Physical Sciences (Clarendon Press: Oxford, 1988).

Hill, R. The elastic behaviour of a crystalline aggregate. Proc. Phys. Soc. London, Sect. A 65, 349 (1952).

Huang, X., Bungaro, C., Godlevsky, V. & Rabe, K. M. Lattice instabilities of cubic NiTi from first principles. Phys. Rev. B 65, 014108 (2001).

Grabowski, B., Hickel, T., Kormann, F. & Neugebauer, J. DFT-based materials and steel design at finite temperatures. Tech. Rep. (Lawrence Livermore National Laboratory (LLNL): Livermore, CA, 2011).

Ong, S. P. et al. Python materials genomics (pymatgen): A robust, open-source python library for materials analysis. Comput. Mater. Sci. 68, 314–319 (2013).

Fireworks workflow software http://pythonhosted.org/FireWorks. Accessed: 2014-09-30.

Man, C.-S. & Huang, M. A simple explicit formula for the Voigt-Reuss-Hill average of elastic polycrystals with arbitrary crystal and texture symmetries. J. Elast. 105, 29–48 (2011).

Ranganathan, S. I. & Ostoja-Starzewski, M. Universal elastic anisotropy index. Phys. Rev. Lett. 101, 055504 (2008).

Anderson, O. L. & Nafe, J. E. The bulk modulus-volume relationship for oxide compounds and related geophysical problems. J. Geophys. Res. 70, 3951–3963 (1965).

Cohen, M. L. Calculation of bulk moduli of diamond and zinc-blende solids. Phys. Rev. B 32, 7988 (1985).

Kaxiras, E. Atomic and electronic structure of solids (Cambridge University Press, 2003).

Schwarz, K. & Blaha, P. Solid state calculations using WIEN2k. Comput. Mater. Sci. 28, 259–273 (2003).

Schwarz, K., Blaha, P. & Madsen, G. K. H. Electronic structure calculations of solids using the WIEN2k package for material sciences. Comput. Phys. Commun. 147, 71–76 (2002).

Giannozzi, P. et al. Quantum espresso: a modular and open-source software project for quantum simulations of materials. J. Phys. Condens. Matter 21, 395502 (2009).

Golesorkhtabar, R., Pavone, P., Spitaler, J., Puschnig, P. & Draxl, C. ElaSTic: A tool for calculating second-order elastic constants from first principles. Comput. Phys. Commun. 184, 1861–1873 (2013).

Yao, H., Ouyang, L. & Ching, W.-Y. Ab initio calculation of elastic constants of ceramic crystals. J. Am. Ceram. Soc. 90, 3194–3204 (2007).

Wu, X., Vanderbilt, D. & Hamann, D. R. Systematic treatment of displacements, strains, and electric fields in density-functional perturbation theory. Phys. Rev. B 72 035105-1:13 (2005).

Mehl, M. J. & Papaconstantopoulos, D. A. Applications of a tight-binding total-energy method for transition and noble metals: Elastic constants, vacancies, and surfaces of monatomic metals. Phys. Rev. B 54, 4519 (1996).

Panda, K. B. & Ravi Chandran, K. S. First principles determination of elastic constants and chemical bonding of titanium boride (TiB) on the basis of density functional theory. Acta Mater. 54, 1641–1657 (2006).

Bond, W. L., Mason, W. P. & McSkimin, H. J. Elastic and electromechanical coupling coefficients of single-crystal barium titanate. Phys. Rev. 82, 442–443 (1951).

Lee, M. & Gilmore, R. S. Single crystal elastic constants of tungsten monocarbide. J. Mater. Sci. 17, 2657–2660 (1982).

Chu, F., Lei, M., Maloy, S. A., Petrovic, J. J. & Mitchell, T. E. Elastic properties of C40 transition metal disilicides. Acta Mater. 44, 3035–3048 (1996).

Sumer, A. & Smith, J. F. Elastic constants of single crystal CaMg2. J. Appl. Phys. 33, 2283–2286 (1962).

Cline, C. F., Dunegan, H. L. & Henderson, G. W. Elastic constants of hexagonal BeO, ZnS, and CdSe. J. Appl. Phys. 38, 1944–1948 (1967).

Son, P. R. & Bartels, R. A. CaO and SrO single crystal elastic constants and their pressure derivatives. J. Phys. Chem. Solids 33, 819–828 (1972).

Ogi, H., Nakamura, N., Hirao, M. & Ledbetter, H. Determination of elastic, anelastic, and piezoelectric coefficients of piezoelectric materials from a single specimen by acoustic resonance spectroscopy. Ultrasonics 42, 183–187 (2004).

Keller, K. R. & Hanak, J. J. Ultrasonic measurements in single-crystal Nb3Sn. Phys. Rev. 154, 628–632 (1967).

Wu, Y. & Hu, W. Elastic and brittle properties of the B2-MgRE (RE=Sc, Y, Ce, Pr, Nd, Gd, Tb, Dy, Ho, Er) intermetallics. Eur. Phys. J. B 60, 75–81 (2007).

Wang, J. et al. First-principles calculations of binary Al compounds: Enthalpies of formation and elastic properties. Calphad 35, 562–573 (2011) World Round Robin Seminar 2010.

Xie, Y.-P., Wang, Z.-Y. & Hou, Z. The phase stability and elastic properties of MgZn2 and Mg4Zn7 in Mg-Zn alloys. Scr. Mater 68, 495–498 (2013).

Shannette, G. & Smith, J. Single crystalline elastic constants of MgZn2. Scr. Metall 3, 33–35 (1969).

Shahsavari, R., Pellenq, R. J.-M. & Ulm, F.-J. Empirical force fields for complex hydrated calcio-silicate layered materials. Phys. Chem. Chem. Phys. 13, 1002–1011 (2011).

Shang, S.-L., Zhang, H., Wang, Y. & Liu, Z.-K. Temperature-dependent elastic stiffness constants of α-and θ-Al2O3 from first-principles calculations. J. Phys. Condens. Matter 22, 375403 (2010).

Wu, Z. & Wentzcovitch, R. M. Quasiharmonic thermal elasticity of crystals: an analytical approach. Phys. Rev. B 83, 184115 (2011).

Grimvall, G. Thermophysical properties of materials. (Elsevier, 1999).

De Jong, M., Chen, W., Angsten, T., Jain, A., Notestine, R., Gamst, A., Sluiter, M., Krishna Ande, C., Van der Zwaag, S., Curtarolo, S., Toher, C., Plata, J., Ceder, G., Persson, K., & Asta, M. Dryad Digital Repository (2015) http://dx.doi.org/10.5061/dryad.h505v