Charge regulation in biomolecular solution

Quarterly Reviews of Biophysics - Tập 46 Số 3 - Trang 265-281 - 2013
Mikael Lund1, Bo Jönsson2
1Department of Theoretical Chemistry, Lund University, PO Box 124, SE-22100, Lund, Sweden.
2Lund Univ.#TAB#

Tóm tắt

Abstract

Proteins and other biomolecules contain acidic and basic titratable groups that give rise to intricate charge distributions and control electrostatic interactions. ‘Charge regulation’ concerns how the proton equilibria of these sites are perturbed when approached by alien molecular matter such as other proteins, surfaces and membranes, DNA, polyelectrolytes etc. Importantly, this perturbation generates a charge response that leads to attractive intermolecular interactions that can be conveniently described by a single molecular property – the charge capacitance. The capacitance quantifies molecular charge fluctuations, i.e. it is the variance of the mean charge and is anintrinsicproperty on par with the net charge and the dipole moment. It directly enters the free energy expression for intermolecular interactions and can be obtained experimentally from the derivative of the titration curve or theoretically from simulations. In this review, we focus on the capacitance concept as a predictive parameter for charge regulation and demonstrate how it can be used to estimate the interaction of a protein with other proteins, polyelectrolytes, membranes as well as with ligands.

Từ khóa


Tài liệu tham khảo

10.1021/bi960789j

Wyman, 1990, Binding and Linkage: Functional Chemistry of Biological Macromolecules

10.1021/jp982745l

10.1021/jp0452812

10.1063/1.1543981

10.1021/la902079u

10.1021/jp027780d

10.1063/1.466378

10.1021/bi00062a014

10.1063/1.3533279

10.1063/1.1641003

10.1021/ac9509972

10.1016/S0006-3495(01)76042-0

10.1002/anie.200502530

10.1073/pnas.181342398

10.1088/0034-4885/29/1/306

10.1016/j.bpj.2009.11.016

10.1073/pnas.38.10.863

10.1021/ja106480a

10.1021/ma970334h

10.1021/bm005656z

10.1021/bi047630o

Da Silva, 2006, On the complexation of proteins and polyelectrolytes, Journal of Physical Chemistry B, Condensed Matter, Materials, Surfaces, Interfaces and Biophysical, 110, 4459

10.1002/prot.21657

Kurut, 2012, Solution electrostatics beyond pH: a coarse grained approach to ion specific interactions between macromolecules, Faraday Discuss., 2013, 271

10.1016/S1359-0294(00)00054-6

10.1063/1.461675

10.1073/pnas.38.10.855

10.1021/ac000752b

10.1073/pnas.41.10.710

10.1021/jf034266b

10.1021/jp0463823

10.1021/la050607z

10.1103/PhysRevLett.98.018302

10.1016/S0168-3659(01)00533-8

10.1021/la0013897

10.1021/la011147m

10.1021/jp805595z

10.1021/jp010360o

10.1006/jcis.1993.1464

10.1016/0021-9797(80)90445-2

Zancong, 2002, Intestinal patches for oral drug delivery, Pharmacuetical Research, 19, 391, 10.1023/A:1015118923204

10.1016/j.cocis.2004.09.006

10.1021/bc0341627

10.1006/jcis.2000.6797

10.1021/jp027066w

10.1021/jp0039823

10.1021/la104720n

10.1021/la000648p

Hill, 1956, An Introduction of Statistical Thermodynamics

10.1021/la991520e

10.1126/science.1083625

10.1021/la061517c

Linderstrøm-Lang, 1924, Om proteinstoffernes ionisation, Comptes Rendus des Travaux du Laboratorie Carlsberg, 15, 1

Linse, 1991, Calcium binding to calmodulin and its globular domains, Journal of Biological Chemistry, 266, 8050, 10.1016/S0021-9258(18)92938-8

10.1016/0022-5193(71)90019-1

10.1063/1.1681434

10.1103/PhysRevLett.104.228301

10.1063/1.463346

10.1080/10408699891274354

10.1021/bm025664a

Tanford, 1961, Physical Chemistry of Macromolecules

10.1016/j.chroma.2005.02.086

10.1021/la020808s