Characterizations of Adjoint Curves in Euclidean 3-Space
Tóm tắt
Từ khóa
Tài liệu tham khảo
Guven IA, Ağaoğlu I (2014) Properties of Bertrand curves in dual space. Int J Phys Sci 9(9):208–213. https://doi.org/10.5897/IJPS2013.4067
Tuncer Y, Ünal S (2012) New representations of Bertrand pairs in Euclidean 3-space. Appl Math Comput 219(4):1833–1842
Barrios IM. http://www.mai.liu.se/~ miizq/kurser/NMAC21/exer20071.pdf
Do Carmo MP (1976) Differential geometry of curves and surfaces. Prentice-Hall, Englewood Cliffs, NJ
Kühnel W (2006) Differential geometry of curves-surfaces-manifolds, 2nd edn. AMS, Providence
Maekawa T, Patrikalakis MN, Sakkalis T, Yu G (1998) Analysis and applications of pipe surfaces. Comput Aided Geom Des 15:437–458
Xu Z, Feng R, Sun GJ (2006) Analytic and algebratic properties of canal surfaces. J Comput Appl Math 195:220–228
Guggenheimerv HW (1963) Differential geometry. McGraw-Hill Comp, New York
Karacan MK, Bukcu B (2007) An alternative moving frame for tubular surface around the spacelike curve with a spacelike binormal in Minkowski 3-space. Math Morav 11:47–54
Karacan MK, Yaylı Y (2008) On the geodesics of tubular surfaces in Minkowski 3-space. Bull Malays Math Sci Soc 31(1):1–10
Yuksel N, Tuncer Y, Karacan MK (2011) Tubular surfaces with Bishop frame of Weingarten types in Euclidean 3-space. Acta Univ Apulensis 27:39–50
Izumiya S, Takeuchi N (2004) New special curves and developable surfaces. Turk J Math 28:153–163
Gray A, Abbena E, Salamon S (2006) Modern differantial geometry of curves and surfaces with mathematica, 3rd edn. Chapman and Hall, CRC, Boca Raton