Thanh, 2013, Chem. Rev., 114, 7610, 10.1021/cr400544s
Koczkur, 2015, Dalton Trans., 44, 17883, 10.1039/C5DT02964C
Wang, 2013, ACS Nano, 7, 4586, 10.1021/nn401363e
Kim, 2004, Angew. Chem., Int. Ed., 43, 3673, 10.1002/anie.200454216
Upadhyay, 2016, J. Alloys Compd., 678, 478, 10.1016/j.jallcom.2016.03.279
Yan, 2005, Catal. Commun., 6, 404, 10.1016/j.catcom.2005.04.004
Li, 2013, J. Am. Chem. Soc., 135, 7098, 10.1021/ja401428e
Pugsley, 2011, J. Solid State Chem., 184, 2345, 10.1016/j.jssc.2011.06.020
Chen, 2008, Chem. Mater., 20, 2757, 10.1021/cm703368u
Ramallo-Lopez, 2007, Physica B, 389, 150, 10.1016/j.physb.2006.07.044
Newton, 2005, Chem. Commun., 118, 10.1039/b411493k
Srabionyan, 2016, Phys. Solid State, 58, 752, 10.1134/S1063783416040247
Klasovsky, 2008, J. Phys. Chem. C, 112, 19555, 10.1021/jp805970e
Liu, 1999, Nanostruct. Mater., 11, 1329, 10.1016/S0965-9773(99)00425-0
Krishnan, 2007, J. Phys. Chem. C, 111, 16724, 10.1021/jp073746t
Schmitz-Antoniak, 2015, Reg. Prog. Phys., 78, 062501, 10.1088/0034-4885/78/6/062501
Moroz, 2011, Russ. Chem. Rev., 80, 293, 10.1070/RC2011v080n04ABEH004163
Gomes, 2006, J. Magn. Magn. Mater., 300, e213, 10.1016/j.jmmm.2005.10.083
Wu, 2000, Mater. Sci. Eng., A, 286, 179, 10.1016/S0921-5093(00)00631-6
Wongpratat, 2016, Appl. Surf. Sci., 380, 60, 10.1016/j.apsusc.2016.02.082
Zhang, 2015, Nanoscale Res. Lett., 10, 37, 10.1186/s11671-015-0756-z
Tan, 2014, CrystEngComm, 16, 9657, 10.1039/C4CE01130A
Rockenberger, 1997, J. Phys. Chem. C, 101, 2691, 10.1021/jp963266u
Rafeletos, 2001, J. Mater. Chem., 11, 2542, 10.1039/b102548c
Pearce, 2008, Nanotechnology, 19, 155603, 10.1088/0957-4484/19/15/155603
Dubiel, 2001, Eur. Phys. J. D, 16, 229, 10.1007/s100530170098
Heinz, 2016, J. Alloys Compd., 681, 307, 10.1016/j.jallcom.2016.04.214
Srabionyan, 2013, J. Non-Cryst. Solids, 382, 24, 10.1016/j.jnoncrysol.2013.09.025
Dubiel, 2015, Phys. Scr., T115, 729
Dubiel, 2001, J. Synchrotron Radiat., 8, 539, 10.1107/S0909049500016666
Kafizas, 2013, Phys. Chem. Chem. Phys., 15, 8254, 10.1039/c3cp44513e
H. Modrow , X-Ray Methods for the Characterization of NPs , in Nanofabrication Towards Biomedical Applications: Techniques, Tools, Applications and Impact , ed. C. S. S. R. Kumar , J. Hormes and C. Leuschner , Wiley-VCH , 2005 , ch. 7
Ingham, 2015, Crystallogr. Rev., 21, 229, 10.1080/0889311X.2015.1024114
Beale, 2010, Phys. Chem. Chem. Phys., 12, 5562, 10.1039/b925206a
Frenkel, 1999, J. Synchrotron Radiat., 6, 293, 10.1107/S0909049598017786
Sun, 2006, Langmuir, 22, 807, 10.1021/la052686k
Cheng, 2004, Chem. Phys. Lett., 400, 122, 10.1016/j.cplett.2004.10.095
Sharma, 2015, RSC Adv., 5, 21762, 10.1039/C4RA16217J
Kabelitz, 2015, CrystEngComm, 17, 8463, 10.1039/C5CE01585E
Leveneur, 2011, J. Phys. Chem. C, 115, 20978, 10.1021/jp206357c
Chen, 2015, Langmuir, 31, 11678, 10.1021/acs.langmuir.5b02759
Kim, 2013, Colloid Polym. Sci., 291, 2087, 10.1007/s00396-013-2923-z
Schindler, 2015, Langmuir, 31, 10130, 10.1021/acs.langmuir.5b02198
Wang, 2008, Eur. Phys. J. B, 65, 57, 10.1140/epjb/e2008-00322-7
Li, 2016, Chem. Rev., 116, 11128, 10.1021/acs.chemrev.5b00690
Singh, 2011, J. Nanopart. Res., 13, 4387, 10.1007/s11051-011-0388-x
Bulavin, 2016, Nanoscale Res. Lett., 11, 35, 10.1186/s11671-016-1230-2
Singh, 2011, Colloids Surf., A, 384, 668, 10.1016/j.colsurfa.2011.05.037
Zhao, 2009, Polymer, 50, 2696, 10.1016/j.polymer.2009.04.013
Harada, 2011, J. Phys. Chem. C, 115, 14081, 10.1021/jp203119a
Liang, 2012, J. Phys. Chem. C, 116, 26649, 10.1021/jp309622f
LaGrow, 2013, J. Phys. Chem. C, 117, 16709, 10.1021/jp405314g
Ulyanenkov, 2011, Phys. Status Solidi A, 208, 2619, 10.1002/pssa.201184273
Tobler, 2009, Geochim. Cosmochim. Acta, 73, 5377, 10.1016/j.gca.2009.06.002
Tarasov, 2013, J. Phys. Chem. C, 117, 12800, 10.1021/jp312443u
Turkovic, 2012, Vacuum, 86, 750, 10.1016/j.vacuum.2011.07.039
Chen, 2012, Langmuir, 28, 15350, 10.1021/la302236u
Caetano, 2011, Phase Transitions, 84, 714, 10.1080/01411594.2011.569318
Krins, 2011, J. Mater. Chem., 21, 1139, 10.1039/C0JM02823A
Meneau, 2003, Nucl. Instrum. Methods Phys. Res., Sect. B, 199, 499, 10.1016/S0168-583X(02)01394-0
Wang, 2011, J. Phys. Chem. C, 115, 11941, 10.1021/jp202243z
Broussous, 2002, J. Phys. Chem. B, 106, 2855, 10.1021/jp012700b
Caetano, 2014, Chem. Mater., 26, 2677, 10.1021/cm5032688
Sharma, 2013, Chem. Mater., 25, 1222, 10.1021/cm303567d
Shard, 2012, J. Phys. Chem. C, 116, 16806, 10.1021/jp305267d
Caprile, 2012, Nanoscale, 4, 7727, 10.1039/c2nr32741d
Belsey, 2015, Biointerphases, 10, 019012, 10.1116/1.4913566
Smirnov, 2016, J. Phys. Chem. C, 120, 10419, 10.1021/acs.jpcc.6b02090
Tunc, 2005, J. Phys. Chem. B, 109, 24182, 10.1021/jp055614a
Battocchio, 2014, J. Phys. Chem. C, 118, 8159, 10.1021/jp4126057
Wang, 2016, Anal. Chem., 88, 3917, 10.1021/acs.analchem.6b00100
Maiti, 2016, RSC Adv., 6, 56406, 10.1039/C6RA09569K
Ramstedt, 2010, Surf. Interface Anal., 42, 855, 10.1002/sia.3211
Muniz-Miranda, 2015, Mater. Chem. Phys., 167, 188, 10.1016/j.matchemphys.2015.10.029
Hota, 2007, Colloids Surf., A, 293, 5, 10.1016/j.colsurfa.2006.06.036
Prieto, 2012, Appl. Surf. Sci., 258, 8807, 10.1016/j.apsusc.2012.05.095
Kalinkin, 2014, Kinet. Catal., 55, 371, 10.1134/S0023158414030045
Chakroune, 2005, Langmuir, 21, 6788, 10.1021/la050706c
Ashida, 2007, Surf. Sci., 601, 3898, 10.1016/j.susc.2007.04.151
Bernardi, 2009, Chem. Phys. Lett., 479, 113, 10.1016/j.cplett.2009.07.110
Li, 2007, J. Phys. Chem. C, 111, 6939, 10.1021/jp0702189
Sheng, 2016, Appl. Catal., B, 193, 189, 10.1016/j.apcatb.2016.04.035
Kim, 2014, Surf. Interface Anal., 46, 193, 10.1002/sia.5404
Jurgensen, 2015, Anal. Chem., 87, 7848, 10.1021/acs.analchem.5b01531
Buso-Rogero, 2016, J. Electroanal. Chem., 763, 116, 10.1016/j.jelechem.2015.12.034
Cheah, 2016, Phys. Chem. Chem. Phys., 18, 15278, 10.1039/C6CP01845A
Shukla, 2003, J. Magn. Magn. Mater., 266, 178, 10.1016/S0304-8853(03)00469-4
Han, 1998, J. Colloid Interface Sci., 208, 272, 10.1006/jcis.1998.5812
Tunc, 2014, Mater. Chem. Phys., 144, 444, 10.1016/j.matchemphys.2014.01.018
Tzitzios, 2006, Nanotechnology, 17, 3750, 10.1088/0957-4484/17/15/023
Jadhav, 2016, Data Brief, 8, 1072, 10.1016/j.dib.2016.07.026
Sabale, 2015, J. Mater. Sci.: Mater. Med., 26, 127
Gharbi, 2017, New J. Chem., 41, 11898, 10.1039/C7NJ02482G
Liang, 2013, Mater. Res. Bull., 48, 2415, 10.1016/j.materresbull.2013.02.066
Duong, 2018, RSC Adv., 8, 4842, 10.1039/C7RA13765F
Chen, 2009, Nanoscale Res. Lett., 4, 1159, 10.1007/s11671-009-9375-x
J. Coates , Interpretation of Infrared Spectra, a Practical Approach , in Encyclopedia of Analytical Chemistry , ed. R. A. Meyers , John Wiley & Sons Ltd , 2006
Marbella, 2015, Chem. Mater., 27, 2721, 10.1021/cm504809c
Scheid, 2016, J. Mater. Chem. C, 4, 2187, 10.1039/C5TC04388C
Vowinkel, 2017, Nanomaterials, 7, 390, 10.3390/nano7110390
Hens, 2013, Chem. Mater., 25, 1211, 10.1021/cm303361s
Uccello-Barretta, 2011, Carbohydr. Res., 346, 753, 10.1016/j.carres.2011.02.001
Canzi, 2011, J. Phys. Chem. C, 115, 7972, 10.1021/jp2008557
Coelho, 2015, Phys. Chem. Chem. Phys., 17, 18971, 10.1039/C5CP02717A
Sharma, 2011, J. Phys. Chem. C, 115, 3297, 10.1021/jp110686a
Smith, 2015, Anal. Chem., 87, 2771, 10.1021/ac504081k
Sharma, 2009, J. Phys. Chem. C, 113, 16387, 10.1021/jp905141h
Doyen, 2013, J. Colloid Interface Sci., 399, 1, 10.1016/j.jcis.2013.02.040
Cure, 2015, Langmuir, 31, 1362, 10.1021/la504715f
Faukner, 2016, Macromol. Res., 24, 441, 10.1007/s13233-016-4062-0
Gomez, 2009, J. Am. Chem. Soc., 131, 14634, 10.1021/ja9065442
Coppel, 2012, Chem. – Eur. J., 18, 5384, 10.1002/chem.201102050
Coppel, 2012, Eur. J. Inorg. Chem., 2691, 10.1002/ejic.201200019
Holland, 2007, Chem. Mater., 19, 2519, 10.1021/cm062821u
Sepelak, 2009, Chem. Mater., 21, 2518, 10.1021/cm900590d
Bogachev, 2014, Appl. Magn. Reson., 45, 329, 10.1007/s00723-014-0525-7
Fardis, 2012, J. Phys.: Condens. Matter, 24, 156001
Gossuin, 2008, Nanotechnology, 19, 475102, 10.1088/0957-4484/19/47/475102
Forker, 2008, Phys. Rev. B: Condens. Matter, 77, 054108, 10.1103/PhysRevB.77.054108
Gutmann, 2013, Solid State Nucl. Magn. Reson., 55–56, 1, 10.1016/j.ssnmr.2013.06.004
Mallissery, 2010, Dalton Trans., 39, 4280, 10.1039/c000695e
Karki, 2015, J. Phys. Chem. B, 119, 11998, 10.1021/acs.jpcb.5b04299
Novio, 2010, Catal. Lett., 140, 1, 10.1007/s10562-010-0428-7
Gutmann, 2013, Phys. Chem. Chem. Phys., 15, 17383, 10.1039/c3cp52927d
Lara, 2012, J. Mater. Chem., 22, 3578, 10.1039/c2jm14757b
Avadhut, 2012, Phys. Chem. Chem. Phys., 14, 11610, 10.1039/c2cp41139c
Avadhut, 2011, Chem. Mater., 23, 1526, 10.1021/cm103286t
Davidowksi, 2016, Langmuir, 32, 3253, 10.1021/acs.langmuir.5b03933
Arnold, 2013, J. Phys. Chem. C, 117, 25733, 10.1021/jp405813a
Perras, 2017, J. Am. Chem. Soc., 139, 2702, 10.1021/jacs.6b11408
Rossini, 2013, Acc. Chem. Res., 46, 1942, 10.1021/ar300322x
Sahoo, 2005, J. Phys. Chem. B, 119, 3879, 10.1021/jp045402y
Kim, 2004, J. Polym. Sci., Part A: Polym. Chem., 42, 5627, 10.1002/pola.20397
Ma, 2014, Mater. Trans., 55, 1900, 10.2320/matertrans.M2014184
Mansfield, 2014, J. Anal. Chem., 86, 1478, 10.1021/ac402888v
Sebby, 2015, Anal. Bioanal. Chem., 407, 2913, 10.1007/s00216-015-8520-x
Maccarini, 2010, J. Phys. Chem. C, 114, 6937, 10.1021/jp9118088
Jia, 2006, Can. J. Chem., 84, 998, 10.1139/v06-108
Rudolph, 2012, Colloids Surf., A, 397, 16, 10.1016/j.colsurfa.2012.01.020
Ortiz-Quinonez, 2013, Inorg. Chem., 52, 10306, 10.1021/ic400627c
Chrissafis, 2012, J. Anal. Appl. Pyrolysis, 96, 92, 10.1016/j.jaap.2012.03.010
Rafati, 2013, Surf. Interface Anal., 45, 1737, 10.1002/sia.5315
Kauling, 2013, Langmuir, 29, 14301, 10.1021/la403388b
Ovari, 2010, Langmuir, 26, 2167, 10.1021/la902674u
Hendel, 2014, Anal. Chem., 86, 11115, 10.1021/ac502053s
Paramelle, 2014, Analyst, 139, 4855, 10.1039/C4AN00978A
Haiss, 2007, Anal. Chem., 79, 4215, 10.1021/ac0702084
Ray, 2015, Langmuir, 31, 3577, 10.1021/la504511j
Harada, 2009, Colloids Surf., A, 349, 176, 10.1016/j.colsurfa.2009.08.015
Behzadi, 2015, Nanoscale, 7, 5134, 10.1039/C4NR00580E
Desai, 2012, Nanosci. Nanotechnol. Lett., 4, 30, 10.1166/nnl.2012.1278
Bindhu, 2013, Spectrochim. Acta, Part A, 115, 409, 10.1016/j.saa.2013.06.047
Zhang, 2014, Sci. Rep., 4, 3867, 10.1038/srep03867
Andersen, 2015, ACS Photonics, 2, 432, 10.1021/ph5004797
Kriegel, 2012, J. Am. Chem. Soc., 134, 1583, 10.1021/ja207798q
Saliba, 2012, Chem. – Eur. J., 18, 8084, 10.1002/chem.201200233
Protesescu, 2015, Nano Lett., 15, 3692, 10.1021/nl5048779
H. Kato , Size Determination of NPs by Dynamic Light Scattering , in Nanomaterials: Processing and Characterization with Lasers , ed. S. C. Singh , H. Zeng , C. Guo and W. Cai , Wiley-VCH , 2012 , ch. 8
Lim, 2013, Nanoscale Res. Lett., 8, 381, 10.1186/1556-276X-8-381
N. A. Belsey , A. G.Shard and C.Minelli
Coleman, 8105, Proc. SPIE, 2011, 810504, 10.1117/12.894297
Lai, 2015, Anal. Methods, 7, 7249, 10.1039/C5AY00674K
Dumas, 2015, Langmuir, 31, 7193, 10.1021/acs.langmuir.5b00417
Fissan, 2014, Anal. Methods, 6, 7324, 10.1039/C4AY01203H
Tomaszewska, 2013, J. Nanomater., 313081
Kestens, 2016, J. Nanopart. Res., 18, 171, 10.1007/s11051-016-3474-2
Murdock, 2008, Toxicol. Sci., 101, 239, 10.1093/toxsci/kfm240
Hole, 2013, J. Nanopart. Res., 15, 2101, 10.1007/s11051-013-2101-8
Filipe, 2010, Pharm. Res., 27, 796, 10.1007/s11095-010-0073-2
Gallego-Urrea, 2011, Trends Anal. Chem., 30, 473, 10.1016/j.trac.2011.01.005
Ryu, 2007, Appl. Surf. Sci., 253, 8408, 10.1016/j.apsusc.2007.04.010
Luque, 2013, RSC Adv., 3, 7119, 10.1039/c3ra40368h
van der Pol, 2014, Nano Lett., 14, 6195, 10.1021/nl503371p
analytikLTD – Technical note. http://www.analytic.co.uk
Minelli, 2014, Surf. Interface Anal., 46, 663, 10.1002/sia.5381
Bell, 2012, Langmuir, 28, 10860, 10.1021/la301351k
Montoro Bustos, 2013, Anal. Bioanal. Chem., 405, 5637, 10.1007/s00216-013-7014-y
Harkness, 2010, Analyst, 135, 868, 10.1039/b922291j
Allabashi, 2009, J. Nanopart. Res., 11, 2003, 10.1007/s11051-008-9561-2
Helfrich, 2006, J. Anal. At. Spectrom., 21, 431, 10.1039/b511705d
Liu, 2014, Anal. Chem., 86, 3405, 10.1021/ac403775a
Pace, 2011, Anal. Chem., 83, 9361, 10.1021/ac201952t
Yang, 2016, Sci. Total Environ., 563–564, 996, 10.1016/j.scitotenv.2015.12.150
Pereira, 2015, Anal. Methods, 7, 598, 10.1039/C4AY02181A
Peters, 2015, J. Anal. At. Spectrom., 30, 1274, 10.1039/C4JA00357H
Olesik, 2012, J. Anal. At. Spectrom., 27, 1143, 10.1039/c2ja30073g
Hinterwirth, 2013, ACS Nano, 7, 1129, 10.1021/nn306024a
Gray, 2013, Environ. Sci. Technol., 47, 14315, 10.1021/es403558c
Donovan, 2016, Chemosphere, 144, 148, 10.1016/j.chemosphere.2015.07.081
Dan, 2015, Microchem. J., 122, 119, 10.1016/j.microc.2015.04.018
Crayton, 2012, Biomaterials, 33, 1509, 10.1016/j.biomaterials.2011.10.077
Liang, 2015, J. Am. Soc. Mass Spectrom., 26, 1259, 10.1007/s13361-015-1151-9
Blanc, 2012, Opt. Mater. Express, 2, 1504, 10.1364/OME.2.001504
Rajagopalachary, 2011, Surf. Interface Anal., 43, 547, 10.1002/sia.3564
Yang, 2013, J. Phys. Chem. C, 117, 16042, 10.1021/jp4048538
Kim, 2015, Mass Spectrom. Rev., 34, 237, 10.1002/mas.21437
Rafati, 2012, J. Controlled Release, 162, 321, 10.1016/j.jconrel.2012.05.008
Neunzehn, 2013, Surf. Interface Anal., 45, 1340, 10.1002/sia.5287
Yang, 2014, Surf. Interface Anal., 46, 224, 10.1002/sia.5252
Zanna, 2010, Appl. Surf. Sci., 256, 6499, 10.1016/j.apsusc.2010.03.132
Lee, 2014, J. Hazard. Mater., 277, 3, 10.1016/j.jhazmat.2014.03.046
Kersting, 2013, Surf. Interface Anal., 45, 503, 10.1002/sia.5117
Kim, 2014, Bull. Korean Chem. Soc., 35, 961, 10.5012/bkcs.2014.35.3.961
Navin, 2009, Anal. Chem., 81, 6295, 10.1021/ac900309z
Zhang, 2015, Talanta, 131, 632, 10.1016/j.talanta.2014.08.032
Malvern Instruments. Website: https://www.malvern.com/en/products/product-range/archimedes
Patton, 2008, Nanotechnology, 19, 405705, 10.1088/0957-4484/19/40/405705
Baldassarre, 2015, J. Nanopart. Res., 17, 377, 10.1007/s11051-015-3163-6
Branda, 2015, J. Sol-Gel Sci. Technol., 73, 54, 10.1007/s10971-014-3494-2
Bumb, 2008, Nanotechnology, 19, 335601, 10.1088/0957-4484/19/33/335601
dos Santos Jr., 2005, J. Mater. Chem., 15, 3045, 10.1039/b506218g
Shim, 2007, J. Colloid Interface Sci., 316, 977, 10.1016/j.jcis.2007.08.021
Cappellari, 2015, J. Colloid Interface Sci., 441, 17, 10.1016/j.jcis.2014.11.016
Zhang, 2011, Nanotechnology, 22, 355603, 10.1088/0957-4484/22/35/355603
Hamlett, 2009, J. Exp. Nanosci., 4, 147, 10.1080/17458080902929911
Oukarroum, 2014, Water, Air, Soil Pollut., 225, 2038, 10.1007/s11270-014-2038-2
Pavlopoulou, 2010, Macromolecules, 43, 9828, 10.1021/ma101477s
Papa, 2014, Ind. Eng. Chem. Res., 53, 19094, 10.1021/ie503070f
Gwak, 2015, Colloids Surf., B, 127, 137, 10.1016/j.colsurfb.2015.01.021
Yousefi, 2016, Synth. React. Inorg. Met., 46, 137, 10.1080/15533174.2014.900795
Engelbrekt, 2014, J. Nanopart. Res., 16, 2562, 10.1007/s11051-014-2562-4
Amirsalari, 2015, Superlattices Microstruct., 82, 507, 10.1016/j.spmi.2015.01.044
Baalousha, 2009, Sci. Total Environ., 407, 2093, 10.1016/j.scitotenv.2008.11.022
Che, 2014, Chem. Eng. J., 243, 68, 10.1016/j.cej.2013.12.095
Merga, 2010, J. Phys. Chem. C, 114, 14811, 10.1021/jp104922a
Sikora, 2015, Anal. Methods, 7, 9835, 10.1039/C5AY02014J
Lee, 2010, J. Phys. Chem. C, 114, 12459, 10.1021/jp1033678
A. K. Mohammad and J.Reineke , Quantitative Nanoparticle Organ Disposition by Gel Permeation Chromatography , in Nanotoxicity – Methods and Protocols , ed. J. Reineke , Springer New York Heidelberg Dordrecht London , 2012 , ch. 23
Naden, 2015, Colloids Surf., A, 478, 36, 10.1016/j.colsurfa.2015.03.046
Gajendiran, 2014, J. Mater. Chem. B, 2, 418, 10.1039/C3TB21113D
Badia, 1997, J. Am. Chem. Soc., 119, 2682, 10.1021/ja963571t
Li, 1998, Philos. Mag. Lett., 78, 37, 10.1080/095008398178237
Zou, 2010, J. Mater. Sci.: Mater. Electron., 21, 868
Riviere, 2016, Polym. Degrad. Stab., 127, 98, 10.1016/j.polymdegradstab.2015.11.015
Elzey, 2012, Anal. Bioanal. Chem., 403, 145, 10.1007/s00216-012-5830-0
Cui, 2014, Anal. Methods, 6, 8577, 10.1039/C4AY01609B
Suleiman, 2009, Talanta, 77, 1579, 10.1016/j.talanta.2008.09.049
R. Anumolu and L. F.Pease III , Rapid Nanoparticle Characterization , in Nanotechnology and Nanomaterials – The Delivery of NPs , ed. A. A. Hashim , ch. 17, 2012 , http://www.intechopen.com
Jimenez-Perez, 2013, Int. J. Thermophys., 34, 955, 10.1007/s10765-012-1372-0
Wu, 2013, Appl. Surf. Sci., 274, 1066
Burg, 2007, Nature, 446, 955, 10.1038/nature05741
Olson, 2015, Chem. Soc. Rev., 44, 40, 10.1039/C4CS00131A
Akbarzadeh, 2012, Nanoscale Res. Lett., 7, 144, 10.1186/1556-276X-7-144
Russo, 2012, Phys. Procedia, 36, 293, 10.1016/j.phpro.2012.06.162
Granata, 2013, Eur. Phys. J. B, 86, 272, 10.1140/epjb/e2013-40051-2
Gamarra, 2009, J. Phys.: Condens. Matter, 21, 115104
Malik, 2010, J. Magn. Magn. Mater., 322, 3742, 10.1016/j.jmmm.2010.07.019
Wang, 2016, Ceram. Int., 42, 12496, 10.1016/j.ceramint.2016.05.038
Andrade, 2012, J. Magn. Magn. Mater., 324, 1753, 10.1016/j.jmmm.2011.12.033
Kumari, 2014, J. Appl. Phys., 116, 124304, 10.1063/1.4896481
Liu, 2016, AIP Adv., 6, 056126, 10.1063/1.4945042
Lake Shore Cryotronics, Inc. http://www.lakeshore.com
http://www.nanomag-project.eu/Mössbauer-spectroscopy.html
Xiao, 2013, Chem. – Eur. J., 19, 3287, 10.1002/chem.201204308
Oh, 2004, J. Magn. Magn. Mater., 280, 147, 10.1016/j.jmmm.2004.02.034
Bystrzejewski, 2008, J. Appl. Phys., 104, 054307, 10.1063/1.2974804
Tiano, 2015, Chem. Mater., 27, 3572, 10.1021/acs.chemmater.5b00767
Fock, 2017, J. Phys. D: Appl. Phys., 50, 265005, 10.1088/1361-6463/aa73fa
Kalska-Szostko, 2014, Appl. Surf. Sci., 306, 7, 10.1016/j.apsusc.2014.04.102
Sarveena, 2016, Phys. Chem. Chem. Phys., 18, 9561, 10.1039/C5CP07698F
Rumenapp, 2015, J. Magn. Magn. Mater., 380, 241, 10.1016/j.jmmm.2014.09.071
Singh, 2013, Appl. Phys. Lett., 103, 193104, 10.1063/1.4828498
Sousa, 2009, J. Appl. Phys., 106, 093901, 10.1063/1.3245326
Domracheva, 2011, ChemPhysChem, 12, 3009, 10.1002/cphc.201100363
Siddique, 2010, Physica B, 405, 3964, 10.1016/j.physb.2010.06.039
Rebbouh, 2007, Phys. Rev. B: Condens. Matter, 76, 174422, 10.1103/PhysRevB.76.174422
Liu, 2016, J. Mater. Sci., 51, 5487, 10.1007/s10853-016-9853-3
Jumas, 2008, Hyperfine Interact., 183, 1, 10.1007/s10751-008-9728-3
Lyubutin, 2009, Hyperfine Interact., 189, 21, 10.1007/s10751-009-9925-8
Joos, 2016, J. Magn. Magn. Mater., 399, 123, 10.1016/j.jmmm.2015.09.060
Yang, 2008, J. Magn. Magn. Mater., 320, L132, 10.1016/j.jmmm.2008.05.038
Johnson, 2012, Hyperfine Interact., 204, 47, 10.1007/s10751-011-0510-6
Kalska-Szostko, 2011, Acta Phys. Pol., A, 119, 15, 10.12693/APhysPolA.119.15
Polikarpov, 2013, IEEE Trans. Magn., 49, 436, 10.1109/TMAG.2012.2222875
Mazeika, 2015, J. Magn. Magn. Mater., 389, 21, 10.1016/j.jmmm.2015.04.044
Ahlawat, 2011, J. Magn. Magn. Mater., 323, 2049, 10.1016/j.jmmm.2011.03.017
Thota, 2016, Mater. Sci. Eng., B, 206, 69, 10.1016/j.mseb.2016.01.002
Bahl, 2006, J. Phys.: Condens. Matter, 18, 4161
Acharya, 2009, J. Magn. Magn. Mater., 321, 2701, 10.1016/j.jmmm.2009.03.071
Grecu, 2012, Hyperfine Interact., 205, 111, 10.1007/s10751-011-0447-9
Protesescu, 2014, ACS Nano, 8, 2639, 10.1021/nn406344n
Birkel, 2011, Inorg. Chem., 50, 11807, 10.1021/ic201940r
Bodker, 1999, J. Magn. Magn. Mater., 196–197, 18, 10.1016/S0304-8853(98)00644-1
Concas, 2003, J. Non-Cryst. Solids, 330, 234, 10.1016/S0022-3093(03)00529-5
Sakuma, 2006, J. Magn. Magn. Mater., 300, 284, 10.1016/j.jmmm.2005.05.016
Cho, 2006, Chem. Mater., 18, 960, 10.1021/cm0522073
Shafranovsky, 2011, J. Nanopart. Res., 13, 4913, 10.1007/s11051-011-0470-4
Johnson, 2014, J. Phys. D: Appl. Phys., 47, 075001, 10.1088/0022-3727/47/7/075001
Durai, 2009, J. Magn. Magn. Mater., 321, L69, 10.1016/j.jmmm.2009.08.003
Diehl, 2001, J. Phys. Chem. B, 105, 7913, 10.1021/jp004252y
Morgunov, 2007, Phys. Solid State, 49, 1507, 10.1134/S1063783407080173
Edelman, 2011, Appl. Magn. Reson., 40, 363, 10.1007/s00723-011-0218-4
Hochepied, 2001, J. Magn. Magn. Mater., 231, 45, 10.1016/S0304-8853(01)00044-0
Schmool, 2007, J. Appl. Phys., 101, 103907, 10.1063/1.2733630
Walton, 2001, Phys. Status Solidi, 201, 3257, 10.1002/pssa.200405435
Mironov, 2014, J. Appl. Phys., 115, 184301, 10.1063/1.4875479
Hseih, 2002, J. Phys. Chem. Solids, 63, 733, 10.1016/S0022-3697(01)00222-0
Gamarra, 2010, Int. J. Nanomed., 5, 203, 10.2147/IJN.S5864
Owens, 2009, J. Magn. Magn. Mater., 321, 2386, 10.1016/j.jmmm.2009.02.135
de Biasi, 2006, Solid State Commun., 138, 271, 10.1016/j.ssc.2006.03.017
Typek, 2008, J. Non-Cryst. Solids, 354, 4256, 10.1016/j.jnoncrysol.2008.06.090
Owens, 2003, J. Phys. Chem. Solids, 64, 2289, 10.1016/S0022-3697(03)00261-0
Bastardis, 2016, J. Appl. Phys., 119, 174302, 10.1063/1.4948570
Butera, 2006, Eur. Phys. J. B, 52, 297, 10.1140/epjb/e2006-00296-4
Vargas, 2007, Appl. Surf. Sci., 254, 274, 10.1016/j.apsusc.2007.07.051
Yulikov, 2004, Kinet. Catal., 45, 735, 10.1023/B:KICA.0000044987.66237.8d
de Biasi, 2005, J. Magn. Magn. Mater., 294, e87, 10.1016/j.jmmm.2005.03.017
Valenzuela, 2012, J. Magn. Magn. Mater., 324, 3398, 10.1016/j.jmmm.2012.02.051
Brice-Profeta, 2005, J. Magn. Magn. Mater., 288, 354, 10.1016/j.jmmm.2004.09.120
Brice-Profeta, 2005, Phys. Scr., T115, 626, 10.1238/Physica.Topical.115a00626
Cai, 2014, J. Appl. Phys., 115, 17B537, 10.1063/1.4869277
Nolle, 2009, New J. Phys., 11, 033034, 10.1088/1367-2630/11/3/033034
Takahashi, 2014, Phys. Rev. B: Condens. Matter, 90, 024423, 10.1103/PhysRevB.90.024423
Smekhova, 2008, IEEE Trans. Magn., 44, 2776, 10.1109/TMAG.2008.2001991
Bartolome, 2008, Phys. Rev. B: Condens. Matter, 77, 184420, 10.1103/PhysRevB.77.184420
Prado, 2013, Chem. – Eur. J., 19, 6685, 10.1002/chem.201203609
Hochepied, 2001, J. Magn. Magn. Mater., 231, 315, 10.1016/S0304-8853(01)00182-2
Oba, 2008, J. Phys. D: Appl. Phys., 41, 134204, 10.1088/0022-3727/41/13/134024
Yamamoto, 2004, J. Magn. Magn. Mater., 272–276, e1183, 10.1016/j.jmmm.2003.12.620
Guglieri, 2012, J. Phys. Chem. C, 116, 6608, 10.1021/jp300837f
Kataoka, 2009, Jpn. J. Appl. Phys., 48, 04C200, 10.1143/JJAP.48.04C200
Herrera, 2010, J. Colloid Interface Sci., 342, 540, 10.1016/j.jcis.2009.10.041
Kodama, 2012, J. Geophys. Res.: Solid Earth, 118, 1, 10.1029/2012JB009502
Calero-DdelC, 2011, Soft Matter, 7, 4497, 10.1039/c0sm00902d
Rodriguez, 2003, J. Appl. Phys., 93, 6963, 10.1063/1.1556160
Yang, 2004, Physica C, 412–414, 1496, 10.1016/j.physc.2004.01.146
Herrling, 2015, Sci. Total Environ., 537, 43, 10.1016/j.scitotenv.2015.07.161
Ghasemi, 2016, J. Cluster Sci., 27, 979, 10.1007/s10876-016-0978-y
Seehra, 2001, Phys. Rev. B: Condens. Matter, 64, 132410, 10.1103/PhysRevB.64.132410
Kitamoto, 2009, Electrochim. Acta, 54, 5969, 10.1016/j.electacta.2009.02.092
Zborowski, 2002, Sep. Sci. Technol., 37, 3611, 10.1081/SS-120014809
Lee, 2011, J. Mater. Chem., 21, 5156, 10.1039/c0jm03770b
Yu, 2010, Biomaterials, 31, 5842, 10.1016/j.biomaterials.2010.03.072
Hutten, 2005, J. Magn. Magn. Mater., 293, 93, 10.1016/j.jmmm.2005.01.048
Bharti, 2015, Faraday Discuss., 181, 437, 10.1039/C4FD00272E
Carriao, 2014, J. Phys. D: Appl. Phys., 47, 025003, 10.1088/0022-3727/47/2/025003
Toh, 2014, RSC Adv., 4, 4114, 10.1039/C3RA46298F
Andreu, 2012, J. Nanomater., 2012, 678581, 10.1155/2012/678581
Fateen, 2015, Chem. Eng. Res. Des., 95, 69, 10.1016/j.cherd.2015.01.007
de Haro, 2015, Biomed. Eng.-Biomed. Tech., 60, 445
http://www.nanomag-project.eu/magnetorelaxometry.html
Ludwig, 2009, J. Magn. Magn. Mater., 321, 1644, 10.1016/j.jmmm.2009.02.105
Adolphi, 2009, J. Magn. Magn. Mater., 321, 1459, 10.1016/j.jmmm.2009.02.067
Adolphi, 2012, Contrast Media Mol. Imaging, 7, 308, 10.1002/cmmi.499
Urbano-Bojorge, 2015, J. Nano Res., 31, 129, 10.4028/www.scientific.net/JNanoR.31.129
Ludwig, 2009, IEEE Trans. Magn., 45, 4857, 10.1109/TMAG.2009.2024635
Peng, 2015, Nanoscale, 7, 7819, 10.1039/C5NR00810G
L. Reimer and H.Kohl , Transmission Electron Microscopy Physics of Image Formation , Springer , New York , 2009 , vol. 51 , pp. 1–15
Daniel, 2004, Chem. Rev., 104, 293, 10.1021/cr030698+
Pankhurst, 2003, J. Phys. D: Appl. Phys., 36, R167, 10.1088/0022-3727/36/13/201
Nurmi, 2005, Environ. Sci. Technol., 39, 1221, 10.1021/es049190u
Astruc, 2005, Angew. Chem., Int. Ed., 44, 7852, 10.1002/anie.200500766
Jun, 2008, Acc. Chem. Res., 41, 179, 10.1021/ar700121f
Pan, 2007, Small, 3, 1941, 10.1002/smll.200700378
Borchert, 2015, Langmuir, 21, 1931, 10.1021/la0477183
Alexander, 1950, J. Appl. Phys., 21, 137, 10.1063/1.1699612
Vilela, 2012, Anal. Chim. Acta, 751, 24, 10.1016/j.aca.2012.08.043
Thanh, 2002, Anal. Chem., 74, 1624, 10.1021/ac011127p
Nam, 2009, J. Am. Chem. Soc., 131, 13639, 10.1021/ja902062j
Perrault, 2010, Proc. Natl. Acad. Sci. U. S. A., 107, 11194, 10.1073/pnas.1001367107
Mahl, 2011, Colloids Surf., A, 377, 386, 10.1016/j.colsurfa.2011.01.031
Albanese, 2011, ACS Nano, 5, 5478, 10.1021/nn2007496
Pallares, 2015, Chem. Commun., 51, 14524, 10.1039/C5CC05331E
Courty, 2005, Nat. Mater., 4, 395, 10.1038/nmat1366
Shevchenko, 2006, Nature, 439, 55, 10.1038/nature04414
Jones, 2010, Nat. Mater., 9, 913, 10.1038/nmat2870
Wiesner, 2011, ACS Nano, 5, 8466, 10.1021/nn204118p
Cheng, 2011, J. Phys. Chem. C, 115, 4425, 10.1021/jp109789j
Kirschling, 2011, Environ. Sci. Technol., 45, 5253, 10.1021/es200770z
Van Den Berg, 2016, J. Am. Chem. Soc., 138, 3433, 10.1021/jacs.5b12800
Petros, 2010, Nat. Rev. Drug Discovery, 9, 615, 10.1038/nrd2591
Ostrowski, 2015, Beilstein J. Nanotechnol., 6, 263, 10.3762/bjnano.6.25
Cutler, 2012, J. Am. Chem. Soc., 134, 1376, 10.1021/ja209351u
Panyam, 2002, FASEB J., 16, 1217, 10.1096/fj.02-0088com
Yue, 2017, Bioconjugate Chem., 28, 1791, 10.1021/acs.bioconjchem.7b00252
Walkey, 2012, J. Am. Chem. Soc., 134, 2139, 10.1021/ja2084338
Blanco-Andujar, 2016, Nanomedicine, 11, 121, 10.2217/nnm.15.185
Gontier, 2008, Nanotoxicology, 2, 218, 10.1080/17435390802538508
D. B. Williams and C. B.Carter , in High-resolution TEM in Transmission Electron Microscopy , Springer US , Boston, MA , 2nd edn, 2009 , pp. 483–509
Axet, 2011, Small, 7, 235, 10.1002/smll.201001112
José-Yacamán, 2001, J. Mol. Catal. A: Chem., 173, 61, 10.1016/S1381-1169(01)00145-5
Pallares, 2016, Nanomedicine, 11, 2845
Dmitrieva, 2007, J. Cryst. Growth, 303, 645, 10.1016/j.jcrysgro.2007.01.017
Tsunekawa, 2000, Phys. Rev. Lett., 85, 3440, 10.1103/PhysRevLett.85.3440
Zhang, 2002, Appl. Phys. Lett., 80, 127, 10.1063/1.1430502
J.-Y. Ascencio , Electron Microscopy of Nanostructured and Ancient Materials , in Handbook of Nanostructured Materials and Nanotechnology , Academic Press, Cambridge, MA , 1999 , vol. 2 , p. 393
Zhang, 2006, J. Nanopart. Res., 8, 1027, 10.1007/s11051-005-9056-3
Chen, 2016, Sci. Rep., 6, 19545, 10.1038/srep19545
Marton, 1934, Bull. Acad. R. Med. Belg., 20, 439
Williamson, 2003, Nat. Mater., 2, 532, 10.1038/nmat944
Zheng, 2012, Nano Lett., 12, 5644, 10.1021/nl302788g
Franks, 2008, J. Nanosci. Nanotechnol., 8, 4404, 10.1166/jnn.2008.306
Chen, 2015, Nanoscale, 7, 4811, 10.1039/C4NR07209J
Liao, 2014, Mater. Lett., 116, 299, 10.1016/j.matlet.2013.11.050
Yuk, 2012, Science, 336, 61, 10.1126/science.1217654
Zheng, 2009, Science, 324, 1309, 10.1126/science.1172104
Xin, 2012, Nano Lett., 12, 1470, 10.1021/nl2041854
Niu, 2013, Nano Lett., 13, 5715, 10.1021/nl4035362
Sutter, 2014, Nat. Commun., 5, 4946, 10.1038/ncomms5946
Sutter, 2014, J. Am. Chem. Soc., 136, 16865, 10.1021/ja508279v
Zheng, 2009, Nano Lett., 9, 2460, 10.1021/nl9012369
Park, 2015, Science, 349, 290, 10.1126/science.aab1343
Park, 2012, ACS Nano, 6, 2078, 10.1021/nn203837m
Danino, 2012, Curr. Opin. Colloid Interface Sci., 17, 316, 10.1016/j.cocis.2012.10.003
Angell, 2004, Annu. Rev. Phys. Chem., 55, 559, 10.1146/annurev.physchem.55.091602.094156
Zweifel, 2005, Chem. Mater., 17, 4256, 10.1021/cm0506858
Kumar, 2008, J. Am. Chem. Soc., 130, 17284, 10.1021/ja8063167
Taveau, 2008, Soft Matter, 4, 311, 10.1039/B710137F
Edgar, 2012, ACS Nano, 6, 1116, 10.1021/nn203586j
Bouyer, 2003, Colloids Surf., A, 217, 179, 10.1016/S0927-7757(02)00574-5
Pallares, 2016, J. Mater. Chem. C, 4, 53, 10.1039/C5TC02426A
Lu, 2009, J. Mater. Chem., 19, 3955, 10.1039/b822673n
Balmes, 2006, Microsc. Microanal., 12, 145, 10.1017/S1431927606060119
Cui, 2007, Science, 317, 647, 10.1126/science.1141768
Kostiainen, 2012, Nat. Nanotechnol., 8, 52, 10.1038/nnano.2012.220
Elazzouzi-Hafraoui, 2008, Biomacromolecules, 9, 57, 10.1021/bm700769p
Filion, 2009, Phys. Rev. Lett., 103, 188302, 10.1103/PhysRevLett.103.188302
van Rijssel, 2011, Phys. Chem. Chem. Phys., 13, 12770, 10.1039/c1cp20297a
Buffat, 2003, Mater. Chem. Phys., 81, 368, 10.1016/S0254-0584(03)00024-5
Romeu, 2011, Microsc. Microanal., 17, 279, 10.1017/S1431927610094511
Schamp, 2005, Ultramicroscopy, 103, 165, 10.1016/j.ultramic.2004.11.007
Reyes-Gasga, 2008, Ultramicroscopy, 108, 929, 10.1016/j.ultramic.2008.03.005
Volkov, 2009, Crystallogr. Rep., 54, 169, 10.1134/S1063774509020011
Esmail, 2013, J. Phys. Chem. C, 117, 9035, 10.1021/jp401902t
Sato, 2006, Mater. Trans., 47, 59, 10.2320/matertrans.47.59
Sato, 2005, J. Appl. Phys., 97, 084301, 10.1063/1.1861987
Sato, 2003, Mater. Trans., 44, 1518, 10.2320/matertrans.44.1518
Li, 2004, J. Phys. Chem. B, 108, 14005, 10.1021/jp047602f
Futterer, 2013, J. Pharm. Biomed., 86, 151, 10.1016/j.jpba.2013.08.005
Li, 2009, J. Appl. Crystallogr., 42, 519, 10.1107/S0021889809013107
Young, 2008, Phys. Rev. Lett., 101, 246103, 10.1103/PhysRevLett.101.246103
Slater, 2016, Ultramicroscopy, 162, 619, 10.1016/j.ultramic.2015.10.007
Romer, 2016, Environ. Sci. Technol., 50, 2183, 10.1021/acs.est.5b04088
Wang, 2011, Phys. Rev. B: Condens. Matter, 84, 073408, 10.1103/PhysRevB.84.073408
Deiana, 2015, ChemCatChem, 7, 3748, 10.1002/cctc.201500791
Akita, 2011, J. Mater. Sci., 46, 4384, 10.1007/s10853-011-5370-6
He, 2015, Micron, 74, 47, 10.1016/j.micron.2015.04.005
Akita, 2008, Surf. Interface Anal., 40, 1760, 10.1002/sia.2999
Li, 2008, Nature, 451, 46, 10.1038/nature06470
Babonneau, 2008, Eur. Phys. J.: Appl. Phys., 44, 3
Tran, 2011, J. Nanopart. Res., 13, 4229, 10.1007/s11051-011-0367-2
Gonzalez, 2009, Angew. Chem., Int. Ed., 48, 5313, 10.1002/anie.200901308
Epicier, 2012, J. Nanopart. Res., 14, 1106, 10.1007/s11051-012-1106-z
Filippousi, 2013, RSC Adv., 3, 24367, 10.1039/c3ra43747g
Wells, 2015, Nanoscale, 7, 6498, 10.1039/C4NR05811A
Jian, 2015, Nanoscale, 7, 885, 10.1039/C4NR06059H
Baudoin, 2013, Microsc. Microanal., 19, 814, 10.1017/S1431927613001475
Wang, 2012, Phys. Rev. Lett., 108, 245502, 10.1103/PhysRevLett.108.245502
Hernandez-Garrido, 2011, Catal. Today, 160, 165, 10.1016/j.cattod.2010.06.010
Surrey, 2012, Nano Lett., 12, 6071, 10.1021/nl302280x
Li, 2014, Sci. Rep., 4, 5521, 10.1038/srep05521
Ferrer, 2008, J. Mater. Chem., 18, 2442, 10.1039/b801320a
Esparza, 2014, J. Phys. Chem. C, 118, 22383, 10.1021/jp507794z
Nelayah, 2014, Nanoscale, 6, 10423, 10.1039/C4NR01427H
Deepak, 2011, J. Cryst. Growth, 325, 60, 10.1016/j.jcrysgro.2011.04.026
Mayoral, 2012, Micron, 43, 557, 10.1016/j.micron.2011.10.020
Jian, 2015, J. Phys. Chem. C, 119, 11114, 10.1021/jp5119103
Yin, 2011, J. Am. Chem. Soc., 133, 10325, 10.1021/ja201218n
Herzing, 2008, Faraday Discuss., 138, 337, 10.1039/B706293C
Ji, 2015, Mater. Lett., 152, 283, 10.1016/j.matlet.2015.03.137
Asoro, 2010, Nanotechnology, 21, 025701, 10.1088/0957-4484/21/2/025701
Hashimoto, 2012, Appl. Phys. Lett., 101, 253108, 10.1063/1.4772514
Hashimoto, 2012, J. Electron Microsc., 61, 409
Sinkler, 2015, ChemCatChem, 7, 3779, 10.1002/cctc.201500784
Ling, 2014, Anal. Methods, 6, 3211, 10.1039/C4AY00075G
Ortalan, 2010, Nat. Nanotechnol., 5, 843, 10.1038/nnano.2010.234
Garcia-Gutierrez, 2014, J. Phys. Chem. C, 118, 22291, 10.1021/jp5057804
Schaffer, 2010, Ultramicroscopy, 110, 1087, 10.1016/j.ultramic.2009.12.012
Koh, 2009, ACS Nano, 3, 3015, 10.1021/nn900922z
Collins, 2015, ACS Photonics, 2, 1628, 10.1021/acsphotonics.5b00421
Wei, 2015, Nano Lett., 15, 5926, 10.1021/acs.nanolett.5b02030
Rojas, 2000, J. Mater. Chem., 10, 715, 10.1039/a908116j
Schliesser, 2015, J. Phys. Chem. C, 119, 17867, 10.1021/acs.jpcc.5b04627
Bowman, 2016, Ultramicroscopy, 167, 5, 10.1016/j.ultramic.2016.04.009
Arenal, 2017, ACS Nano, 7, 4006, 10.1021/nn306028t
Estrade, 2012, Micron, 43, 30, 10.1016/j.micron.2011.04.002
Bals, 2014, Angew. Chem., Int. Ed., 53, 10600, 10.1002/anie.201401059
Meurig Thomas, 2013, J. Colloid Interface Sci., 392, 7, 10.1016/j.jcis.2012.09.068
Jin-Phillipp, 2012, ACS Nano, 6, 4039, 10.1021/nn3003482
Hernandez-Garrido, 2014, Nanoscale, 6, 12696, 10.1039/C4NR03017F
Benlekbir, 2009, Philos. Mag. Lett., 89, 145, 10.1080/09500830802698882
Florea, 2009, J. Phys. Chem. C, 113, 17711, 10.1021/jp905968n
Gommes, 2005, Langmuir, 21, 12378, 10.1021/la051682c
Mourdikoudis, 2013, Nanoscale, 5, 4776, 10.1039/c3nr00924f
Zecevic, 2012, Microporous Mesoporous Mater., 164, 99, 10.1016/j.micromeso.2012.06.024
Alloyeau, 2009, Ultramicroscopy, 109, 788, 10.1016/j.ultramic.2009.02.002
Saghi, 2011, Nano Lett., 11, 4666, 10.1021/nl202253a
Okuda, 2010, J. Electron Microsc., 59, 173, 10.1093/jmicro/dfp055
Monsegue, 2012, Microsc. Microanal., 18, 1362, 10.1017/S1431927612013530
Mazzaglia, 2009, J. Phys. Chem. C, 113, 12772, 10.1021/jp903673x
Kempen, 2013, Mater. Res. Soc. Symp. Proc., 1569, 157, 10.1557/opl.2013.613
Goldstein, 2014, J. Microsc., 256, 237, 10.1111/jmi.12179
Delvalee, 2015, Meas. Sci. Technol., 26, 085601, 10.1088/0957-0233/26/8/085601
Rades, 2014, RSC Adv., 4, 49577, 10.1039/C4RA05092D
Hodoroaba, 2014, Surf. Interface Anal., 46, 945, 10.1002/sia.5426
Hodoroaba, 2014, Microsc. Microanal., 20, 602, 10.1017/S1431927614000014
Chen, 2013, J. Eur. Ceram. Soc., 33, 2499, 10.1016/j.jeurceramsoc.2013.04.026
Ashokkumar, 2014, Opt. Mater., 37, 671, 10.1016/j.optmat.2014.08.012
Vilalta-Clemente, 2017, Acta Mater., 125, 125, 10.1016/j.actamat.2016.11.039
Bochmann, 2015, J. Appl. Phys., 117, 215306, 10.1063/1.4921446
Koblischka-Veneva, 2006, Supercond. Sci. Technol., 19, S562, 10.1088/0953-2048/19/7/S27
Koblischka-Veneva, 2006, Physica C, 445, 379, 10.1016/j.physc.2006.04.022
Small, 2002, J. Microsc., 206, 170, 10.1046/j.1365-2818.2002.01015.x
Binnig, 1986, Phys. Rev. Lett., 56, 930, 10.1103/PhysRevLett.56.930
A. Vilalta-Clemente and K.Gloystein , Principles of Atomic Force Microscopy (AFM) , in Proceedings of Physics of Advanced Materials Winter School , 2008
Mechler, 2005, Phys. Rev. B: Condens. Matter, 72, 125407, 10.1103/PhysRevB.72.125407
D. Patel , C.Perry and S.Kennedy , Proceedings of SPIE , Optical Components and Materials IV , San Jose, CA , 2007 , vol. 6469 , p. 64690A
Qiu, 2016, Science, 352, 697, 10.1126/science.aad9521
Pitto-Barry, 2015, Dalton Trans., 44, 20308, 10.1039/C5DT03205A
Hubenthal, 2012, Appl. Sci., 2, 566, 10.3390/app2030566
Oćwieja, 2013, J. Nanopart. Res., 15, 1460, 10.1007/s11051-013-1460-5
Hoo, 2008, J. Nanopart. Res., 10, 89, 10.1007/s11051-008-9435-7
Viguié, 2007, Colloids Surf., A, 302, 269, 10.1016/j.colsurfa.2007.02.038
Gu, 2005, Langmuir, 21, 3122, 10.1021/la047843e
De Andrade, 2013, Polimeros, 23, 19, 10.1590/S0104-14282013005000009
Fekete, 2012, J. Nanopart. Res., 14, 1062, 10.1007/s11051-012-1062-7
Akhmadeev, 2014, J. Phys.: Conf. Ser., 560, 12005
Kopaczyńska, 2008, New J. Chem., 32, 1509, 10.1039/b800867a
Muniz-Miranda, 2007, Mater. Sci. Eng., C, 27, 1295, 10.1016/j.msec.2006.06.019
Lu, 2004, J. Mater. Chem., 14, 1005, 10.1039/b314868h
Fan, 2009, Phys. Chem. Chem. Phys., 11, 7381, 10.1039/b904744a
Nie, 1997, Science, 275, 1102, 10.1126/science.275.5303.1102
Raj, 2014, Int. J. Electrochem. Sci., 9, 2090, 10.1016/S1452-3981(23)07913-0
Cordova, 2016, NanoWorld J., 2, 10, 10.17756/nwj.2016-022
Neves, 2010, Nanotechnology, 21, 305706, 10.1088/0957-4484/21/30/305706
Mironov, 2007, J. Surf. Invest., 1, 348, 10.1134/S1027451007030202
Moya, 2015, Nanoscale, 7, 17764, 10.1039/C5NR04424C
Torre, 2011, Sci. Rep., 1, 202, 10.1038/srep00202
Akbari, 2011, Iran. J. Mater. Sci. Eng., 8, 48
Gollwitzer, 2016, Anal. Methods, 8, 5272, 10.1039/C6AY00419A
Sikora, 2016, Langmuir, 32, 2216, 10.1021/acs.langmuir.5b04160
Braun, 2012, J. Nanopart. Res., 14, 1021, 10.1007/s11051-012-1021-3
de Temmerman, 2014, J. Nanopart. Res., 16, 2628, 10.1007/s11051-014-2628-3
Carney, 2011, Nat. Commun., 2, 335, 10.1038/ncomms1338
Bell, 2013, Anal. Methods, 5, 4591, 10.1039/c3ay40771c
Qazi, 2009, J. Colloid Interface Sci., 338, 105, 10.1016/j.jcis.2009.06.006
Ruiz-Baltazar, 2010, MRS Proc., 1275, 27, 10.1557/PROC-1275-S3-P102