Kỹ thuật đặc trưng cho các hạt nano: so sánh và bổ sung trong việc nghiên cứu tính chất của hạt nano

Nanoscale - Tập 10 Số 27 - Trang 12871-12934
Stefanos Mourdikoudis1,2,3,4, Roger M. Pallares1,2,3,4, Nguyễn Thị Kim Thanh1,2,3,4
1Biophysics Group, Department of Physics and Astronomy, University College London, London, UK
2Department of Physics and Astronomy
3London
4UCL Healthcare Biomagnetic and Nanomaterials Laboratories, 21 Albemarle Street, London W1S 4BS, UK

Tóm tắt

Sử dụng kết hợp và lựa chọn cẩn thận các kỹ thuật thực nghiệm – hiểu biết về tính chất của hạt nano và tối ưu hóa hiệu suất trong các ứng dụng.

Từ khóa


Tài liệu tham khảo

Thanh, 2013, Chem. Rev., 114, 7610, 10.1021/cr400544s

Koczkur, 2015, Dalton Trans., 44, 17883, 10.1039/C5DT02964C

Wang, 2013, ACS Nano, 7, 4586, 10.1021/nn401363e

Kim, 2004, Angew. Chem., Int. Ed., 43, 3673, 10.1002/anie.200454216

C. Minelli

P. Dobson

Upadhyay, 2016, J. Alloys Compd., 678, 478, 10.1016/j.jallcom.2016.03.279

Yan, 2005, Catal. Commun., 6, 404, 10.1016/j.catcom.2005.04.004

Li, 2013, J. Am. Chem. Soc., 135, 7098, 10.1021/ja401428e

Pugsley, 2011, J. Solid State Chem., 184, 2345, 10.1016/j.jssc.2011.06.020

Chen, 2008, Chem. Mater., 20, 2757, 10.1021/cm703368u

Ramallo-Lopez, 2007, Physica B, 389, 150, 10.1016/j.physb.2006.07.044

Newton, 2005, Chem. Commun., 118, 10.1039/b411493k

Srabionyan, 2016, Phys. Solid State, 58, 752, 10.1134/S1063783416040247

Klasovsky, 2008, J. Phys. Chem. C, 112, 19555, 10.1021/jp805970e

Liu, 1999, Nanostruct. Mater., 11, 1329, 10.1016/S0965-9773(99)00425-0

Krishnan, 2007, J. Phys. Chem. C, 111, 16724, 10.1021/jp073746t

Schmitz-Antoniak, 2015, Reg. Prog. Phys., 78, 062501, 10.1088/0034-4885/78/6/062501

Moroz, 2011, Russ. Chem. Rev., 80, 293, 10.1070/RC2011v080n04ABEH004163

Gomes, 2006, J. Magn. Magn. Mater., 300, e213, 10.1016/j.jmmm.2005.10.083

Wu, 2000, Mater. Sci. Eng., A, 286, 179, 10.1016/S0921-5093(00)00631-6

Wongpratat, 2016, Appl. Surf. Sci., 380, 60, 10.1016/j.apsusc.2016.02.082

Zhang, 2015, Nanoscale Res. Lett., 10, 37, 10.1186/s11671-015-0756-z

Tan, 2014, CrystEngComm, 16, 9657, 10.1039/C4CE01130A

Rockenberger, 1997, J. Phys. Chem. C, 101, 2691, 10.1021/jp963266u

Rafeletos, 2001, J. Mater. Chem., 11, 2542, 10.1039/b102548c

Pearce, 2008, Nanotechnology, 19, 155603, 10.1088/0957-4484/19/15/155603

Dubiel, 2001, Eur. Phys. J. D, 16, 229, 10.1007/s100530170098

Heinz, 2016, J. Alloys Compd., 681, 307, 10.1016/j.jallcom.2016.04.214

Srabionyan, 2013, J. Non-Cryst. Solids, 382, 24, 10.1016/j.jnoncrysol.2013.09.025

Dubiel, 2015, Phys. Scr., T115, 729

Dubiel, 2001, J. Synchrotron Radiat., 8, 539, 10.1107/S0909049500016666

Kafizas, 2013, Phys. Chem. Chem. Phys., 15, 8254, 10.1039/c3cp44513e

H. Modrow , X-Ray Methods for the Characterization of NPs , in Nanofabrication Towards Biomedical Applications: Techniques, Tools, Applications and Impact , ed. C. S. S. R. Kumar , J. Hormes and C. Leuschner , Wiley-VCH , 2005 , ch. 7

Ingham, 2015, Crystallogr. Rev., 21, 229, 10.1080/0889311X.2015.1024114

Beale, 2010, Phys. Chem. Chem. Phys., 12, 5562, 10.1039/b925206a

Frenkel, 1999, J. Synchrotron Radiat., 6, 293, 10.1107/S0909049598017786

Sun, 2006, Langmuir, 22, 807, 10.1021/la052686k

Cheng, 2004, Chem. Phys. Lett., 400, 122, 10.1016/j.cplett.2004.10.095

Sharma, 2015, RSC Adv., 5, 21762, 10.1039/C4RA16217J

Kabelitz, 2015, CrystEngComm, 17, 8463, 10.1039/C5CE01585E

Leveneur, 2011, J. Phys. Chem. C, 115, 20978, 10.1021/jp206357c

Chen, 2015, Langmuir, 31, 11678, 10.1021/acs.langmuir.5b02759

Kim, 2013, Colloid Polym. Sci., 291, 2087, 10.1007/s00396-013-2923-z

Schindler, 2015, Langmuir, 31, 10130, 10.1021/acs.langmuir.5b02198

Wang, 2008, Eur. Phys. J. B, 65, 57, 10.1140/epjb/e2008-00322-7

Li, 2016, Chem. Rev., 116, 11128, 10.1021/acs.chemrev.5b00690

Singh, 2011, J. Nanopart. Res., 13, 4387, 10.1007/s11051-011-0388-x

Bulavin, 2016, Nanoscale Res. Lett., 11, 35, 10.1186/s11671-016-1230-2

Singh, 2011, Colloids Surf., A, 384, 668, 10.1016/j.colsurfa.2011.05.037

Zhao, 2009, Polymer, 50, 2696, 10.1016/j.polymer.2009.04.013

Harada, 2011, J. Phys. Chem. C, 115, 14081, 10.1021/jp203119a

Liang, 2012, J. Phys. Chem. C, 116, 26649, 10.1021/jp309622f

LaGrow, 2013, J. Phys. Chem. C, 117, 16709, 10.1021/jp405314g

Ulyanenkov, 2011, Phys. Status Solidi A, 208, 2619, 10.1002/pssa.201184273

Tobler, 2009, Geochim. Cosmochim. Acta, 73, 5377, 10.1016/j.gca.2009.06.002

Tarasov, 2013, J. Phys. Chem. C, 117, 12800, 10.1021/jp312443u

Turkovic, 2012, Vacuum, 86, 750, 10.1016/j.vacuum.2011.07.039

Chen, 2012, Langmuir, 28, 15350, 10.1021/la302236u

Caetano, 2011, Phase Transitions, 84, 714, 10.1080/01411594.2011.569318

Krins, 2011, J. Mater. Chem., 21, 1139, 10.1039/C0JM02823A

Meneau, 2003, Nucl. Instrum. Methods Phys. Res., Sect. B, 199, 499, 10.1016/S0168-583X(02)01394-0

Wang, 2011, J. Phys. Chem. C, 115, 11941, 10.1021/jp202243z

Broussous, 2002, J. Phys. Chem. B, 106, 2855, 10.1021/jp012700b

Caetano, 2014, Chem. Mater., 26, 2677, 10.1021/cm5032688

Sharma, 2013, Chem. Mater., 25, 1222, 10.1021/cm303567d

Shard, 2012, J. Phys. Chem. C, 116, 16806, 10.1021/jp305267d

Caprile, 2012, Nanoscale, 4, 7727, 10.1039/c2nr32741d

Belsey, 2015, Biointerphases, 10, 019012, 10.1116/1.4913566

Smirnov, 2016, J. Phys. Chem. C, 120, 10419, 10.1021/acs.jpcc.6b02090

Tunc, 2005, J. Phys. Chem. B, 109, 24182, 10.1021/jp055614a

Battocchio, 2014, J. Phys. Chem. C, 118, 8159, 10.1021/jp4126057

Wang, 2016, Anal. Chem., 88, 3917, 10.1021/acs.analchem.6b00100

Maiti, 2016, RSC Adv., 6, 56406, 10.1039/C6RA09569K

Ramstedt, 2010, Surf. Interface Anal., 42, 855, 10.1002/sia.3211

Muniz-Miranda, 2015, Mater. Chem. Phys., 167, 188, 10.1016/j.matchemphys.2015.10.029

Hota, 2007, Colloids Surf., A, 293, 5, 10.1016/j.colsurfa.2006.06.036

Prieto, 2012, Appl. Surf. Sci., 258, 8807, 10.1016/j.apsusc.2012.05.095

Kalinkin, 2014, Kinet. Catal., 55, 371, 10.1134/S0023158414030045

Chakroune, 2005, Langmuir, 21, 6788, 10.1021/la050706c

Ashida, 2007, Surf. Sci., 601, 3898, 10.1016/j.susc.2007.04.151

Bernardi, 2009, Chem. Phys. Lett., 479, 113, 10.1016/j.cplett.2009.07.110

Li, 2007, J. Phys. Chem. C, 111, 6939, 10.1021/jp0702189

Sheng, 2016, Appl. Catal., B, 193, 189, 10.1016/j.apcatb.2016.04.035

Kim, 2014, Surf. Interface Anal., 46, 193, 10.1002/sia.5404

Jurgensen, 2015, Anal. Chem., 87, 7848, 10.1021/acs.analchem.5b01531

Buso-Rogero, 2016, J. Electroanal. Chem., 763, 116, 10.1016/j.jelechem.2015.12.034

Cheah, 2016, Phys. Chem. Chem. Phys., 18, 15278, 10.1039/C6CP01845A

Shukla, 2003, J. Magn. Magn. Mater., 266, 178, 10.1016/S0304-8853(03)00469-4

Han, 1998, J. Colloid Interface Sci., 208, 272, 10.1006/jcis.1998.5812

Tunc, 2014, Mater. Chem. Phys., 144, 444, 10.1016/j.matchemphys.2014.01.018

Tzitzios, 2006, Nanotechnology, 17, 3750, 10.1088/0957-4484/17/15/023

Jadhav, 2016, Data Brief, 8, 1072, 10.1016/j.dib.2016.07.026

Sabale, 2015, J. Mater. Sci.: Mater. Med., 26, 127

Gharbi, 2017, New J. Chem., 41, 11898, 10.1039/C7NJ02482G

Liang, 2013, Mater. Res. Bull., 48, 2415, 10.1016/j.materresbull.2013.02.066

Duong, 2018, RSC Adv., 8, 4842, 10.1039/C7RA13765F

Chen, 2009, Nanoscale Res. Lett., 4, 1159, 10.1007/s11671-009-9375-x

J. Coates , Interpretation of Infrared Spectra, a Practical Approach , in Encyclopedia of Analytical Chemistry , ed. R. A. Meyers , John Wiley & Sons Ltd , 2006

Marbella, 2015, Chem. Mater., 27, 2721, 10.1021/cm504809c

Scheid, 2016, J. Mater. Chem. C, 4, 2187, 10.1039/C5TC04388C

Vowinkel, 2017, Nanomaterials, 7, 390, 10.3390/nano7110390

Hens, 2013, Chem. Mater., 25, 1211, 10.1021/cm303361s

Uccello-Barretta, 2011, Carbohydr. Res., 346, 753, 10.1016/j.carres.2011.02.001

Canzi, 2011, J. Phys. Chem. C, 115, 7972, 10.1021/jp2008557

Coelho, 2015, Phys. Chem. Chem. Phys., 17, 18971, 10.1039/C5CP02717A

Sharma, 2011, J. Phys. Chem. C, 115, 3297, 10.1021/jp110686a

Smith, 2015, Anal. Chem., 87, 2771, 10.1021/ac504081k

Sharma, 2009, J. Phys. Chem. C, 113, 16387, 10.1021/jp905141h

Doyen, 2013, J. Colloid Interface Sci., 399, 1, 10.1016/j.jcis.2013.02.040

Cure, 2015, Langmuir, 31, 1362, 10.1021/la504715f

Faukner, 2016, Macromol. Res., 24, 441, 10.1007/s13233-016-4062-0

Gomez, 2009, J. Am. Chem. Soc., 131, 14634, 10.1021/ja9065442

Coppel, 2012, Chem. – Eur. J., 18, 5384, 10.1002/chem.201102050

Coppel, 2012, Eur. J. Inorg. Chem., 2691, 10.1002/ejic.201200019

Holland, 2007, Chem. Mater., 19, 2519, 10.1021/cm062821u

Sepelak, 2009, Chem. Mater., 21, 2518, 10.1021/cm900590d

Bogachev, 2014, Appl. Magn. Reson., 45, 329, 10.1007/s00723-014-0525-7

Fardis, 2012, J. Phys.: Condens. Matter, 24, 156001

Gossuin, 2008, Nanotechnology, 19, 475102, 10.1088/0957-4484/19/47/475102

Forker, 2008, Phys. Rev. B: Condens. Matter, 77, 054108, 10.1103/PhysRevB.77.054108

Gutmann, 2013, Solid State Nucl. Magn. Reson., 55–56, 1, 10.1016/j.ssnmr.2013.06.004

Mallissery, 2010, Dalton Trans., 39, 4280, 10.1039/c000695e

Karki, 2015, J. Phys. Chem. B, 119, 11998, 10.1021/acs.jpcb.5b04299

Novio, 2010, Catal. Lett., 140, 1, 10.1007/s10562-010-0428-7

Gutmann, 2013, Phys. Chem. Chem. Phys., 15, 17383, 10.1039/c3cp52927d

Lara, 2012, J. Mater. Chem., 22, 3578, 10.1039/c2jm14757b

Avadhut, 2012, Phys. Chem. Chem. Phys., 14, 11610, 10.1039/c2cp41139c

Avadhut, 2011, Chem. Mater., 23, 1526, 10.1021/cm103286t

Davidowksi, 2016, Langmuir, 32, 3253, 10.1021/acs.langmuir.5b03933

Arnold, 2013, J. Phys. Chem. C, 117, 25733, 10.1021/jp405813a

Perras, 2017, J. Am. Chem. Soc., 139, 2702, 10.1021/jacs.6b11408

Rossini, 2013, Acc. Chem. Res., 46, 1942, 10.1021/ar300322x

Sahoo, 2005, J. Phys. Chem. B, 119, 3879, 10.1021/jp045402y

Kim, 2004, J. Polym. Sci., Part A: Polym. Chem., 42, 5627, 10.1002/pola.20397

Ma, 2014, Mater. Trans., 55, 1900, 10.2320/matertrans.M2014184

Mansfield, 2014, J. Anal. Chem., 86, 1478, 10.1021/ac402888v

Sebby, 2015, Anal. Bioanal. Chem., 407, 2913, 10.1007/s00216-015-8520-x

Maccarini, 2010, J. Phys. Chem. C, 114, 6937, 10.1021/jp9118088

Jia, 2006, Can. J. Chem., 84, 998, 10.1139/v06-108

Rudolph, 2012, Colloids Surf., A, 397, 16, 10.1016/j.colsurfa.2012.01.020

Ortiz-Quinonez, 2013, Inorg. Chem., 52, 10306, 10.1021/ic400627c

Chrissafis, 2012, J. Anal. Appl. Pyrolysis, 96, 92, 10.1016/j.jaap.2012.03.010

Rafati, 2013, Surf. Interface Anal., 45, 1737, 10.1002/sia.5315

Kauling, 2013, Langmuir, 29, 14301, 10.1021/la403388b

Ovari, 2010, Langmuir, 26, 2167, 10.1021/la902674u

Hendel, 2014, Anal. Chem., 86, 11115, 10.1021/ac502053s

Paramelle, 2014, Analyst, 139, 4855, 10.1039/C4AN00978A

Haiss, 2007, Anal. Chem., 79, 4215, 10.1021/ac0702084

Ray, 2015, Langmuir, 31, 3577, 10.1021/la504511j

Harada, 2009, Colloids Surf., A, 349, 176, 10.1016/j.colsurfa.2009.08.015

Behzadi, 2015, Nanoscale, 7, 5134, 10.1039/C4NR00580E

Desai, 2012, Nanosci. Nanotechnol. Lett., 4, 30, 10.1166/nnl.2012.1278

Bindhu, 2013, Spectrochim. Acta, Part A, 115, 409, 10.1016/j.saa.2013.06.047

Zhang, 2014, Sci. Rep., 4, 3867, 10.1038/srep03867

Andersen, 2015, ACS Photonics, 2, 432, 10.1021/ph5004797

Kriegel, 2012, J. Am. Chem. Soc., 134, 1583, 10.1021/ja207798q

Saliba, 2012, Chem. – Eur. J., 18, 8084, 10.1002/chem.201200233

Protesescu, 2015, Nano Lett., 15, 3692, 10.1021/nl5048779

H. Kato , Size Determination of NPs by Dynamic Light Scattering , in Nanomaterials: Processing and Characterization with Lasers , ed. S. C. Singh , H. Zeng , C. Guo and W. Cai , Wiley-VCH , 2012 , ch. 8

Lim, 2013, Nanoscale Res. Lett., 8, 381, 10.1186/1556-276X-8-381

M. Wolfgang

N. A. Belsey , A. G.Shard and C.Minelli

Coleman, 8105, Proc. SPIE, 2011, 810504, 10.1117/12.894297

Lai, 2015, Anal. Methods, 7, 7249, 10.1039/C5AY00674K

Dumas, 2015, Langmuir, 31, 7193, 10.1021/acs.langmuir.5b00417

Fissan, 2014, Anal. Methods, 6, 7324, 10.1039/C4AY01203H

Tomaszewska, 2013, J. Nanomater., 313081

Kestens, 2016, J. Nanopart. Res., 18, 171, 10.1007/s11051-016-3474-2

Murdock, 2008, Toxicol. Sci., 101, 239, 10.1093/toxsci/kfm240

Hole, 2013, J. Nanopart. Res., 15, 2101, 10.1007/s11051-013-2101-8

Filipe, 2010, Pharm. Res., 27, 796, 10.1007/s11095-010-0073-2

Gallego-Urrea, 2011, Trends Anal. Chem., 30, 473, 10.1016/j.trac.2011.01.005

Ryu, 2007, Appl. Surf. Sci., 253, 8408, 10.1016/j.apsusc.2007.04.010

Luque, 2013, RSC Adv., 3, 7119, 10.1039/c3ra40368h

van der Pol, 2014, Nano Lett., 14, 6195, 10.1021/nl503371p

analytikLTD – Technical note. http://www.analytic.co.uk

Minelli, 2014, Surf. Interface Anal., 46, 663, 10.1002/sia.5381

Bell, 2012, Langmuir, 28, 10860, 10.1021/la301351k

Montoro Bustos, 2013, Anal. Bioanal. Chem., 405, 5637, 10.1007/s00216-013-7014-y

Harkness, 2010, Analyst, 135, 868, 10.1039/b922291j

Allabashi, 2009, J. Nanopart. Res., 11, 2003, 10.1007/s11051-008-9561-2

Helfrich, 2006, J. Anal. At. Spectrom., 21, 431, 10.1039/b511705d

Liu, 2014, Anal. Chem., 86, 3405, 10.1021/ac403775a

Pace, 2011, Anal. Chem., 83, 9361, 10.1021/ac201952t

Yang, 2016, Sci. Total Environ., 563–564, 996, 10.1016/j.scitotenv.2015.12.150

Pereira, 2015, Anal. Methods, 7, 598, 10.1039/C4AY02181A

Peters, 2015, J. Anal. At. Spectrom., 30, 1274, 10.1039/C4JA00357H

Olesik, 2012, J. Anal. At. Spectrom., 27, 1143, 10.1039/c2ja30073g

Hinterwirth, 2013, ACS Nano, 7, 1129, 10.1021/nn306024a

Gray, 2013, Environ. Sci. Technol., 47, 14315, 10.1021/es403558c

Donovan, 2016, Chemosphere, 144, 148, 10.1016/j.chemosphere.2015.07.081

Dan, 2015, Microchem. J., 122, 119, 10.1016/j.microc.2015.04.018

Crayton, 2012, Biomaterials, 33, 1509, 10.1016/j.biomaterials.2011.10.077

Liang, 2015, J. Am. Soc. Mass Spectrom., 26, 1259, 10.1007/s13361-015-1151-9

Blanc, 2012, Opt. Mater. Express, 2, 1504, 10.1364/OME.2.001504

Rajagopalachary, 2011, Surf. Interface Anal., 43, 547, 10.1002/sia.3564

D. Scurr

Yang, 2013, J. Phys. Chem. C, 117, 16042, 10.1021/jp4048538

Kim, 2015, Mass Spectrom. Rev., 34, 237, 10.1002/mas.21437

Rafati, 2012, J. Controlled Release, 162, 321, 10.1016/j.jconrel.2012.05.008

Neunzehn, 2013, Surf. Interface Anal., 45, 1340, 10.1002/sia.5287

Yang, 2014, Surf. Interface Anal., 46, 224, 10.1002/sia.5252

Zanna, 2010, Appl. Surf. Sci., 256, 6499, 10.1016/j.apsusc.2010.03.132

Lee, 2014, J. Hazard. Mater., 277, 3, 10.1016/j.jhazmat.2014.03.046

Kersting, 2013, Surf. Interface Anal., 45, 503, 10.1002/sia.5117

Kim, 2014, Bull. Korean Chem. Soc., 35, 961, 10.5012/bkcs.2014.35.3.961

Navin, 2009, Anal. Chem., 81, 6295, 10.1021/ac900309z

Zhang, 2015, Talanta, 131, 632, 10.1016/j.talanta.2014.08.032

Malvern Instruments. Website: https://www.malvern.com/en/products/product-range/archimedes

Patton, 2008, Nanotechnology, 19, 405705, 10.1088/0957-4484/19/40/405705

Baldassarre, 2015, J. Nanopart. Res., 17, 377, 10.1007/s11051-015-3163-6

Branda, 2015, J. Sol-Gel Sci. Technol., 73, 54, 10.1007/s10971-014-3494-2

Bumb, 2008, Nanotechnology, 19, 335601, 10.1088/0957-4484/19/33/335601

dos Santos Jr., 2005, J. Mater. Chem., 15, 3045, 10.1039/b506218g

Shim, 2007, J. Colloid Interface Sci., 316, 977, 10.1016/j.jcis.2007.08.021

Cappellari, 2015, J. Colloid Interface Sci., 441, 17, 10.1016/j.jcis.2014.11.016

Zhang, 2011, Nanotechnology, 22, 355603, 10.1088/0957-4484/22/35/355603

Hamlett, 2009, J. Exp. Nanosci., 4, 147, 10.1080/17458080902929911

Oukarroum, 2014, Water, Air, Soil Pollut., 225, 2038, 10.1007/s11270-014-2038-2

Pavlopoulou, 2010, Macromolecules, 43, 9828, 10.1021/ma101477s

Papa, 2014, Ind. Eng. Chem. Res., 53, 19094, 10.1021/ie503070f

Gwak, 2015, Colloids Surf., B, 127, 137, 10.1016/j.colsurfb.2015.01.021

Yousefi, 2016, Synth. React. Inorg. Met., 46, 137, 10.1080/15533174.2014.900795

Engelbrekt, 2014, J. Nanopart. Res., 16, 2562, 10.1007/s11051-014-2562-4

Amirsalari, 2015, Superlattices Microstruct., 82, 507, 10.1016/j.spmi.2015.01.044

Baalousha, 2009, Sci. Total Environ., 407, 2093, 10.1016/j.scitotenv.2008.11.022

Che, 2014, Chem. Eng. J., 243, 68, 10.1016/j.cej.2013.12.095

Merga, 2010, J. Phys. Chem. C, 114, 14811, 10.1021/jp104922a

Sikora, 2015, Anal. Methods, 7, 9835, 10.1039/C5AY02014J

Lee, 2010, J. Phys. Chem. C, 114, 12459, 10.1021/jp1033678

A. K. Mohammad and J.Reineke , Quantitative Nanoparticle Organ Disposition by Gel Permeation Chromatography , in Nanotoxicity – Methods and Protocols , ed. J. Reineke , Springer New York Heidelberg Dordrecht London , 2012 , ch. 23

Naden, 2015, Colloids Surf., A, 478, 36, 10.1016/j.colsurfa.2015.03.046

Gajendiran, 2014, J. Mater. Chem. B, 2, 418, 10.1039/C3TB21113D

Badia, 1997, J. Am. Chem. Soc., 119, 2682, 10.1021/ja963571t

Li, 1998, Philos. Mag. Lett., 78, 37, 10.1080/095008398178237

Zou, 2010, J. Mater. Sci.: Mater. Electron., 21, 868

Riviere, 2016, Polym. Degrad. Stab., 127, 98, 10.1016/j.polymdegradstab.2015.11.015

Elzey, 2012, Anal. Bioanal. Chem., 403, 145, 10.1007/s00216-012-5830-0

Cui, 2014, Anal. Methods, 6, 8577, 10.1039/C4AY01609B

Suleiman, 2009, Talanta, 77, 1579, 10.1016/j.talanta.2008.09.049

R. Anumolu and L. F.Pease III , Rapid Nanoparticle Characterization , in Nanotechnology and Nanomaterials – The Delivery of NPs , ed. A. A. Hashim , ch. 17, 2012 , http://www.intechopen.com

Jimenez-Perez, 2013, Int. J. Thermophys., 34, 955, 10.1007/s10765-012-1372-0

Wu, 2013, Appl. Surf. Sci., 274, 1066

Burg, 2007, Nature, 446, 955, 10.1038/nature05741

Olson, 2015, Chem. Soc. Rev., 44, 40, 10.1039/C4CS00131A

Akbarzadeh, 2012, Nanoscale Res. Lett., 7, 144, 10.1186/1556-276X-7-144

Russo, 2012, Phys. Procedia, 36, 293, 10.1016/j.phpro.2012.06.162

Granata, 2013, Eur. Phys. J. B, 86, 272, 10.1140/epjb/e2013-40051-2

Gamarra, 2009, J. Phys.: Condens. Matter, 21, 115104

Malik, 2010, J. Magn. Magn. Mater., 322, 3742, 10.1016/j.jmmm.2010.07.019

Wang, 2016, Ceram. Int., 42, 12496, 10.1016/j.ceramint.2016.05.038

Andrade, 2012, J. Magn. Magn. Mater., 324, 1753, 10.1016/j.jmmm.2011.12.033

Kumari, 2014, J. Appl. Phys., 116, 124304, 10.1063/1.4896481

Liu, 2016, AIP Adv., 6, 056126, 10.1063/1.4945042

Lake Shore Cryotronics, Inc. http://www.lakeshore.com

http://www.nanomag-project.eu/Mössbauer-spectroscopy.html

Xiao, 2013, Chem. – Eur. J., 19, 3287, 10.1002/chem.201204308

Oh, 2004, J. Magn. Magn. Mater., 280, 147, 10.1016/j.jmmm.2004.02.034

Bystrzejewski, 2008, J. Appl. Phys., 104, 054307, 10.1063/1.2974804

Tiano, 2015, Chem. Mater., 27, 3572, 10.1021/acs.chemmater.5b00767

Fock, 2017, J. Phys. D: Appl. Phys., 50, 265005, 10.1088/1361-6463/aa73fa

Kalska-Szostko, 2014, Appl. Surf. Sci., 306, 7, 10.1016/j.apsusc.2014.04.102

Sarveena, 2016, Phys. Chem. Chem. Phys., 18, 9561, 10.1039/C5CP07698F

Rumenapp, 2015, J. Magn. Magn. Mater., 380, 241, 10.1016/j.jmmm.2014.09.071

Singh, 2013, Appl. Phys. Lett., 103, 193104, 10.1063/1.4828498

Sousa, 2009, J. Appl. Phys., 106, 093901, 10.1063/1.3245326

Domracheva, 2011, ChemPhysChem, 12, 3009, 10.1002/cphc.201100363

Siddique, 2010, Physica B, 405, 3964, 10.1016/j.physb.2010.06.039

Rebbouh, 2007, Phys. Rev. B: Condens. Matter, 76, 174422, 10.1103/PhysRevB.76.174422

Liu, 2016, J. Mater. Sci., 51, 5487, 10.1007/s10853-016-9853-3

Jumas, 2008, Hyperfine Interact., 183, 1, 10.1007/s10751-008-9728-3

Lyubutin, 2009, Hyperfine Interact., 189, 21, 10.1007/s10751-009-9925-8

Joos, 2016, J. Magn. Magn. Mater., 399, 123, 10.1016/j.jmmm.2015.09.060

Yang, 2008, J. Magn. Magn. Mater., 320, L132, 10.1016/j.jmmm.2008.05.038

Johnson, 2012, Hyperfine Interact., 204, 47, 10.1007/s10751-011-0510-6

Kalska-Szostko, 2011, Acta Phys. Pol., A, 119, 15, 10.12693/APhysPolA.119.15

Polikarpov, 2013, IEEE Trans. Magn., 49, 436, 10.1109/TMAG.2012.2222875

Mazeika, 2015, J. Magn. Magn. Mater., 389, 21, 10.1016/j.jmmm.2015.04.044

Ahlawat, 2011, J. Magn. Magn. Mater., 323, 2049, 10.1016/j.jmmm.2011.03.017

Thota, 2016, Mater. Sci. Eng., B, 206, 69, 10.1016/j.mseb.2016.01.002

Bahl, 2006, J. Phys.: Condens. Matter, 18, 4161

Acharya, 2009, J. Magn. Magn. Mater., 321, 2701, 10.1016/j.jmmm.2009.03.071

Grecu, 2012, Hyperfine Interact., 205, 111, 10.1007/s10751-011-0447-9

Protesescu, 2014, ACS Nano, 8, 2639, 10.1021/nn406344n

Birkel, 2011, Inorg. Chem., 50, 11807, 10.1021/ic201940r

Bodker, 1999, J. Magn. Magn. Mater., 196–197, 18, 10.1016/S0304-8853(98)00644-1

Concas, 2003, J. Non-Cryst. Solids, 330, 234, 10.1016/S0022-3093(03)00529-5

Sakuma, 2006, J. Magn. Magn. Mater., 300, 284, 10.1016/j.jmmm.2005.05.016

Cho, 2006, Chem. Mater., 18, 960, 10.1021/cm0522073

Shafranovsky, 2011, J. Nanopart. Res., 13, 4913, 10.1007/s11051-011-0470-4

Johnson, 2014, J. Phys. D: Appl. Phys., 47, 075001, 10.1088/0022-3727/47/7/075001

Durai, 2009, J. Magn. Magn. Mater., 321, L69, 10.1016/j.jmmm.2009.08.003

Diehl, 2001, J. Phys. Chem. B, 105, 7913, 10.1021/jp004252y

Morgunov, 2007, Phys. Solid State, 49, 1507, 10.1134/S1063783407080173

Edelman, 2011, Appl. Magn. Reson., 40, 363, 10.1007/s00723-011-0218-4

Hochepied, 2001, J. Magn. Magn. Mater., 231, 45, 10.1016/S0304-8853(01)00044-0

Schmool, 2007, J. Appl. Phys., 101, 103907, 10.1063/1.2733630

Walton, 2001, Phys. Status Solidi, 201, 3257, 10.1002/pssa.200405435

Mironov, 2014, J. Appl. Phys., 115, 184301, 10.1063/1.4875479

Hseih, 2002, J. Phys. Chem. Solids, 63, 733, 10.1016/S0022-3697(01)00222-0

Gamarra, 2010, Int. J. Nanomed., 5, 203, 10.2147/IJN.S5864

Owens, 2009, J. Magn. Magn. Mater., 321, 2386, 10.1016/j.jmmm.2009.02.135

de Biasi, 2006, Solid State Commun., 138, 271, 10.1016/j.ssc.2006.03.017

Typek, 2008, J. Non-Cryst. Solids, 354, 4256, 10.1016/j.jnoncrysol.2008.06.090

Owens, 2003, J. Phys. Chem. Solids, 64, 2289, 10.1016/S0022-3697(03)00261-0

Bastardis, 2016, J. Appl. Phys., 119, 174302, 10.1063/1.4948570

Butera, 2006, Eur. Phys. J. B, 52, 297, 10.1140/epjb/e2006-00296-4

Vargas, 2007, Appl. Surf. Sci., 254, 274, 10.1016/j.apsusc.2007.07.051

Yulikov, 2004, Kinet. Catal., 45, 735, 10.1023/B:KICA.0000044987.66237.8d

de Biasi, 2005, J. Magn. Magn. Mater., 294, e87, 10.1016/j.jmmm.2005.03.017

Valenzuela, 2012, J. Magn. Magn. Mater., 324, 3398, 10.1016/j.jmmm.2012.02.051

Brice-Profeta, 2005, J. Magn. Magn. Mater., 288, 354, 10.1016/j.jmmm.2004.09.120

Brice-Profeta, 2005, Phys. Scr., T115, 626, 10.1238/Physica.Topical.115a00626

Cai, 2014, J. Appl. Phys., 115, 17B537, 10.1063/1.4869277

Nolle, 2009, New J. Phys., 11, 033034, 10.1088/1367-2630/11/3/033034

Takahashi, 2014, Phys. Rev. B: Condens. Matter, 90, 024423, 10.1103/PhysRevB.90.024423

Smekhova, 2008, IEEE Trans. Magn., 44, 2776, 10.1109/TMAG.2008.2001991

Bartolome, 2008, Phys. Rev. B: Condens. Matter, 77, 184420, 10.1103/PhysRevB.77.184420

Prado, 2013, Chem. – Eur. J., 19, 6685, 10.1002/chem.201203609

Hochepied, 2001, J. Magn. Magn. Mater., 231, 315, 10.1016/S0304-8853(01)00182-2

Oba, 2008, J. Phys. D: Appl. Phys., 41, 134204, 10.1088/0022-3727/41/13/134024

Yamamoto, 2004, J. Magn. Magn. Mater., 272–276, e1183, 10.1016/j.jmmm.2003.12.620

Guglieri, 2012, J. Phys. Chem. C, 116, 6608, 10.1021/jp300837f

Kataoka, 2009, Jpn. J. Appl. Phys., 48, 04C200, 10.1143/JJAP.48.04C200

Herrera, 2010, J. Colloid Interface Sci., 342, 540, 10.1016/j.jcis.2009.10.041

Kodama, 2012, J. Geophys. Res.: Solid Earth, 118, 1, 10.1029/2012JB009502

Calero-DdelC, 2011, Soft Matter, 7, 4497, 10.1039/c0sm00902d

Rodriguez, 2003, J. Appl. Phys., 93, 6963, 10.1063/1.1556160

Yang, 2004, Physica C, 412–414, 1496, 10.1016/j.physc.2004.01.146

Herrling, 2015, Sci. Total Environ., 537, 43, 10.1016/j.scitotenv.2015.07.161

Ghasemi, 2016, J. Cluster Sci., 27, 979, 10.1007/s10876-016-0978-y

Seehra, 2001, Phys. Rev. B: Condens. Matter, 64, 132410, 10.1103/PhysRevB.64.132410

Kitamoto, 2009, Electrochim. Acta, 54, 5969, 10.1016/j.electacta.2009.02.092

Zborowski, 2002, Sep. Sci. Technol., 37, 3611, 10.1081/SS-120014809

Lee, 2011, J. Mater. Chem., 21, 5156, 10.1039/c0jm03770b

Yu, 2010, Biomaterials, 31, 5842, 10.1016/j.biomaterials.2010.03.072

Hutten, 2005, J. Magn. Magn. Mater., 293, 93, 10.1016/j.jmmm.2005.01.048

Bharti, 2015, Faraday Discuss., 181, 437, 10.1039/C4FD00272E

Carriao, 2014, J. Phys. D: Appl. Phys., 47, 025003, 10.1088/0022-3727/47/2/025003

Toh, 2014, RSC Adv., 4, 4114, 10.1039/C3RA46298F

Andreu, 2012, J. Nanomater., 2012, 678581, 10.1155/2012/678581

Fateen, 2015, Chem. Eng. Res. Des., 95, 69, 10.1016/j.cherd.2015.01.007

de Haro, 2015, Biomed. Eng.-Biomed. Tech., 60, 445

http://www.nanomag-project.eu/magnetorelaxometry.html

Ludwig, 2009, J. Magn. Magn. Mater., 321, 1644, 10.1016/j.jmmm.2009.02.105

Adolphi, 2009, J. Magn. Magn. Mater., 321, 1459, 10.1016/j.jmmm.2009.02.067

Adolphi, 2012, Contrast Media Mol. Imaging, 7, 308, 10.1002/cmmi.499

Urbano-Bojorge, 2015, J. Nano Res., 31, 129, 10.4028/www.scientific.net/JNanoR.31.129

Ludwig, 2009, IEEE Trans. Magn., 45, 4857, 10.1109/TMAG.2009.2024635

Peng, 2015, Nanoscale, 7, 7819, 10.1039/C5NR00810G

L. Reimer and H.Kohl , Transmission Electron Microscopy Physics of Image Formation , Springer , New York , 2009 , vol. 51 , pp. 1–15

Daniel, 2004, Chem. Rev., 104, 293, 10.1021/cr030698+

Pankhurst, 2003, J. Phys. D: Appl. Phys., 36, R167, 10.1088/0022-3727/36/13/201

Nurmi, 2005, Environ. Sci. Technol., 39, 1221, 10.1021/es049190u

Astruc, 2005, Angew. Chem., Int. Ed., 44, 7852, 10.1002/anie.200500766

Jun, 2008, Acc. Chem. Res., 41, 179, 10.1021/ar700121f

Pan, 2007, Small, 3, 1941, 10.1002/smll.200700378

Borchert, 2015, Langmuir, 21, 1931, 10.1021/la0477183

Alexander, 1950, J. Appl. Phys., 21, 137, 10.1063/1.1699612

Vilela, 2012, Anal. Chim. Acta, 751, 24, 10.1016/j.aca.2012.08.043

Thanh, 2002, Anal. Chem., 74, 1624, 10.1021/ac011127p

Nam, 2009, J. Am. Chem. Soc., 131, 13639, 10.1021/ja902062j

Perrault, 2010, Proc. Natl. Acad. Sci. U. S. A., 107, 11194, 10.1073/pnas.1001367107

Mahl, 2011, Colloids Surf., A, 377, 386, 10.1016/j.colsurfa.2011.01.031

Albanese, 2011, ACS Nano, 5, 5478, 10.1021/nn2007496

Pallares, 2015, Chem. Commun., 51, 14524, 10.1039/C5CC05331E

Courty, 2005, Nat. Mater., 4, 395, 10.1038/nmat1366

Shevchenko, 2006, Nature, 439, 55, 10.1038/nature04414

Jones, 2010, Nat. Mater., 9, 913, 10.1038/nmat2870

Wiesner, 2011, ACS Nano, 5, 8466, 10.1021/nn204118p

Cheng, 2011, J. Phys. Chem. C, 115, 4425, 10.1021/jp109789j

Kirschling, 2011, Environ. Sci. Technol., 45, 5253, 10.1021/es200770z

Van Den Berg, 2016, J. Am. Chem. Soc., 138, 3433, 10.1021/jacs.5b12800

Petros, 2010, Nat. Rev. Drug Discovery, 9, 615, 10.1038/nrd2591

Ostrowski, 2015, Beilstein J. Nanotechnol., 6, 263, 10.3762/bjnano.6.25

Cutler, 2012, J. Am. Chem. Soc., 134, 1376, 10.1021/ja209351u

Panyam, 2002, FASEB J., 16, 1217, 10.1096/fj.02-0088com

Yue, 2017, Bioconjugate Chem., 28, 1791, 10.1021/acs.bioconjchem.7b00252

Walkey, 2012, J. Am. Chem. Soc., 134, 2139, 10.1021/ja2084338

Blanco-Andujar, 2016, Nanomedicine, 11, 121, 10.2217/nnm.15.185

Gontier, 2008, Nanotoxicology, 2, 218, 10.1080/17435390802538508

D. B. Williams and C. B.Carter , in High-resolution TEM in Transmission Electron Microscopy , Springer US , Boston, MA , 2nd edn, 2009 , pp. 483–509

Axet, 2011, Small, 7, 235, 10.1002/smll.201001112

José-Yacamán, 2001, J. Mol. Catal. A: Chem., 173, 61, 10.1016/S1381-1169(01)00145-5

Pallares, 2016, Nanomedicine, 11, 2845

Dmitrieva, 2007, J. Cryst. Growth, 303, 645, 10.1016/j.jcrysgro.2007.01.017

Tsunekawa, 2000, Phys. Rev. Lett., 85, 3440, 10.1103/PhysRevLett.85.3440

Zhang, 2002, Appl. Phys. Lett., 80, 127, 10.1063/1.1430502

J.-Y. Ascencio , Electron Microscopy of Nanostructured and Ancient Materials , in Handbook of Nanostructured Materials and Nanotechnology , Academic Press, Cambridge, MA , 1999 , vol. 2 , p. 393

Zhang, 2006, J. Nanopart. Res., 8, 1027, 10.1007/s11051-005-9056-3

Chen, 2016, Sci. Rep., 6, 19545, 10.1038/srep19545

Marton, 1934, Bull. Acad. R. Med. Belg., 20, 439

Williamson, 2003, Nat. Mater., 2, 532, 10.1038/nmat944

Zheng, 2012, Nano Lett., 12, 5644, 10.1021/nl302788g

Franks, 2008, J. Nanosci. Nanotechnol., 8, 4404, 10.1166/jnn.2008.306

Chen, 2015, Nanoscale, 7, 4811, 10.1039/C4NR07209J

Liao, 2014, Mater. Lett., 116, 299, 10.1016/j.matlet.2013.11.050

Yuk, 2012, Science, 336, 61, 10.1126/science.1217654

Zheng, 2009, Science, 324, 1309, 10.1126/science.1172104

Xin, 2012, Nano Lett., 12, 1470, 10.1021/nl2041854

Niu, 2013, Nano Lett., 13, 5715, 10.1021/nl4035362

Sutter, 2014, Nat. Commun., 5, 4946, 10.1038/ncomms5946

Sutter, 2014, J. Am. Chem. Soc., 136, 16865, 10.1021/ja508279v

Zheng, 2009, Nano Lett., 9, 2460, 10.1021/nl9012369

Park, 2015, Science, 349, 290, 10.1126/science.aab1343

Park, 2012, ACS Nano, 6, 2078, 10.1021/nn203837m

Danino, 2012, Curr. Opin. Colloid Interface Sci., 17, 316, 10.1016/j.cocis.2012.10.003

Angell, 2004, Annu. Rev. Phys. Chem., 55, 559, 10.1146/annurev.physchem.55.091602.094156

Zweifel, 2005, Chem. Mater., 17, 4256, 10.1021/cm0506858

Kumar, 2008, J. Am. Chem. Soc., 130, 17284, 10.1021/ja8063167

Taveau, 2008, Soft Matter, 4, 311, 10.1039/B710137F

Edgar, 2012, ACS Nano, 6, 1116, 10.1021/nn203586j

Bouyer, 2003, Colloids Surf., A, 217, 179, 10.1016/S0927-7757(02)00574-5

Pallares, 2016, J. Mater. Chem. C, 4, 53, 10.1039/C5TC02426A

Lu, 2009, J. Mater. Chem., 19, 3955, 10.1039/b822673n

Balmes, 2006, Microsc. Microanal., 12, 145, 10.1017/S1431927606060119

Cui, 2007, Science, 317, 647, 10.1126/science.1141768

Kostiainen, 2012, Nat. Nanotechnol., 8, 52, 10.1038/nnano.2012.220

Elazzouzi-Hafraoui, 2008, Biomacromolecules, 9, 57, 10.1021/bm700769p

Filion, 2009, Phys. Rev. Lett., 103, 188302, 10.1103/PhysRevLett.103.188302

van Rijssel, 2011, Phys. Chem. Chem. Phys., 13, 12770, 10.1039/c1cp20297a

Buffat, 2003, Mater. Chem. Phys., 81, 368, 10.1016/S0254-0584(03)00024-5

Romeu, 2011, Microsc. Microanal., 17, 279, 10.1017/S1431927610094511

Schamp, 2005, Ultramicroscopy, 103, 165, 10.1016/j.ultramic.2004.11.007

Reyes-Gasga, 2008, Ultramicroscopy, 108, 929, 10.1016/j.ultramic.2008.03.005

Volkov, 2009, Crystallogr. Rep., 54, 169, 10.1134/S1063774509020011

Esmail, 2013, J. Phys. Chem. C, 117, 9035, 10.1021/jp401902t

Sato, 2006, Mater. Trans., 47, 59, 10.2320/matertrans.47.59

Sato, 2005, J. Appl. Phys., 97, 084301, 10.1063/1.1861987

Sato, 2003, Mater. Trans., 44, 1518, 10.2320/matertrans.44.1518

Li, 2004, J. Phys. Chem. B, 108, 14005, 10.1021/jp047602f

Futterer, 2013, J. Pharm. Biomed., 86, 151, 10.1016/j.jpba.2013.08.005

Li, 2009, J. Appl. Crystallogr., 42, 519, 10.1107/S0021889809013107

Young, 2008, Phys. Rev. Lett., 101, 246103, 10.1103/PhysRevLett.101.246103

Slater, 2016, Ultramicroscopy, 162, 619, 10.1016/j.ultramic.2015.10.007

Romer, 2016, Environ. Sci. Technol., 50, 2183, 10.1021/acs.est.5b04088

Wang, 2011, Phys. Rev. B: Condens. Matter, 84, 073408, 10.1103/PhysRevB.84.073408

Deiana, 2015, ChemCatChem, 7, 3748, 10.1002/cctc.201500791

Akita, 2011, J. Mater. Sci., 46, 4384, 10.1007/s10853-011-5370-6

He, 2015, Micron, 74, 47, 10.1016/j.micron.2015.04.005

Akita, 2008, Surf. Interface Anal., 40, 1760, 10.1002/sia.2999

Li, 2008, Nature, 451, 46, 10.1038/nature06470

Babonneau, 2008, Eur. Phys. J.: Appl. Phys., 44, 3

Tran, 2011, J. Nanopart. Res., 13, 4229, 10.1007/s11051-011-0367-2

Gonzalez, 2009, Angew. Chem., Int. Ed., 48, 5313, 10.1002/anie.200901308

Epicier, 2012, J. Nanopart. Res., 14, 1106, 10.1007/s11051-012-1106-z

Filippousi, 2013, RSC Adv., 3, 24367, 10.1039/c3ra43747g

Wells, 2015, Nanoscale, 7, 6498, 10.1039/C4NR05811A

Jian, 2015, Nanoscale, 7, 885, 10.1039/C4NR06059H

Baudoin, 2013, Microsc. Microanal., 19, 814, 10.1017/S1431927613001475

Wang, 2012, Phys. Rev. Lett., 108, 245502, 10.1103/PhysRevLett.108.245502

Hernandez-Garrido, 2011, Catal. Today, 160, 165, 10.1016/j.cattod.2010.06.010

Surrey, 2012, Nano Lett., 12, 6071, 10.1021/nl302280x

Li, 2014, Sci. Rep., 4, 5521, 10.1038/srep05521

Ferrer, 2008, J. Mater. Chem., 18, 2442, 10.1039/b801320a

Esparza, 2014, J. Phys. Chem. C, 118, 22383, 10.1021/jp507794z

Nelayah, 2014, Nanoscale, 6, 10423, 10.1039/C4NR01427H

Deepak, 2011, J. Cryst. Growth, 325, 60, 10.1016/j.jcrysgro.2011.04.026

Mayoral, 2012, Micron, 43, 557, 10.1016/j.micron.2011.10.020

Jian, 2015, J. Phys. Chem. C, 119, 11114, 10.1021/jp5119103

Yin, 2011, J. Am. Chem. Soc., 133, 10325, 10.1021/ja201218n

Herzing, 2008, Faraday Discuss., 138, 337, 10.1039/B706293C

Ji, 2015, Mater. Lett., 152, 283, 10.1016/j.matlet.2015.03.137

Asoro, 2010, Nanotechnology, 21, 025701, 10.1088/0957-4484/21/2/025701

Hashimoto, 2012, Appl. Phys. Lett., 101, 253108, 10.1063/1.4772514

Hashimoto, 2012, J. Electron Microsc., 61, 409

Sinkler, 2015, ChemCatChem, 7, 3779, 10.1002/cctc.201500784

Ling, 2014, Anal. Methods, 6, 3211, 10.1039/C4AY00075G

Ortalan, 2010, Nat. Nanotechnol., 5, 843, 10.1038/nnano.2010.234

Garcia-Gutierrez, 2014, J. Phys. Chem. C, 118, 22291, 10.1021/jp5057804

Schaffer, 2010, Ultramicroscopy, 110, 1087, 10.1016/j.ultramic.2009.12.012

Koh, 2009, ACS Nano, 3, 3015, 10.1021/nn900922z

Collins, 2015, ACS Photonics, 2, 1628, 10.1021/acsphotonics.5b00421

Wei, 2015, Nano Lett., 15, 5926, 10.1021/acs.nanolett.5b02030

Rojas, 2000, J. Mater. Chem., 10, 715, 10.1039/a908116j

Schliesser, 2015, J. Phys. Chem. C, 119, 17867, 10.1021/acs.jpcc.5b04627

Bowman, 2016, Ultramicroscopy, 167, 5, 10.1016/j.ultramic.2016.04.009

Arenal, 2017, ACS Nano, 7, 4006, 10.1021/nn306028t

Estrade, 2012, Micron, 43, 30, 10.1016/j.micron.2011.04.002

Bals, 2014, Angew. Chem., Int. Ed., 53, 10600, 10.1002/anie.201401059

Meurig Thomas, 2013, J. Colloid Interface Sci., 392, 7, 10.1016/j.jcis.2012.09.068

Jin-Phillipp, 2012, ACS Nano, 6, 4039, 10.1021/nn3003482

Hernandez-Garrido, 2014, Nanoscale, 6, 12696, 10.1039/C4NR03017F

Benlekbir, 2009, Philos. Mag. Lett., 89, 145, 10.1080/09500830802698882

Florea, 2009, J. Phys. Chem. C, 113, 17711, 10.1021/jp905968n

Gommes, 2005, Langmuir, 21, 12378, 10.1021/la051682c

Mourdikoudis, 2013, Nanoscale, 5, 4776, 10.1039/c3nr00924f

Zecevic, 2012, Microporous Mesoporous Mater., 164, 99, 10.1016/j.micromeso.2012.06.024

Alloyeau, 2009, Ultramicroscopy, 109, 788, 10.1016/j.ultramic.2009.02.002

Saghi, 2011, Nano Lett., 11, 4666, 10.1021/nl202253a

Okuda, 2010, J. Electron Microsc., 59, 173, 10.1093/jmicro/dfp055

Monsegue, 2012, Microsc. Microanal., 18, 1362, 10.1017/S1431927612013530

Mazzaglia, 2009, J. Phys. Chem. C, 113, 12772, 10.1021/jp903673x

Kempen, 2013, Mater. Res. Soc. Symp. Proc., 1569, 157, 10.1557/opl.2013.613

Goldstein, 2014, J. Microsc., 256, 237, 10.1111/jmi.12179

Delvalee, 2015, Meas. Sci. Technol., 26, 085601, 10.1088/0957-0233/26/8/085601

Rades, 2014, RSC Adv., 4, 49577, 10.1039/C4RA05092D

Hodoroaba, 2014, Surf. Interface Anal., 46, 945, 10.1002/sia.5426

Hodoroaba, 2014, Microsc. Microanal., 20, 602, 10.1017/S1431927614000014

Chen, 2013, J. Eur. Ceram. Soc., 33, 2499, 10.1016/j.jeurceramsoc.2013.04.026

Ashokkumar, 2014, Opt. Mater., 37, 671, 10.1016/j.optmat.2014.08.012

Vilalta-Clemente, 2017, Acta Mater., 125, 125, 10.1016/j.actamat.2016.11.039

Bochmann, 2015, J. Appl. Phys., 117, 215306, 10.1063/1.4921446

Koblischka-Veneva, 2006, Supercond. Sci. Technol., 19, S562, 10.1088/0953-2048/19/7/S27

Koblischka-Veneva, 2006, Physica C, 445, 379, 10.1016/j.physc.2006.04.022

Small, 2002, J. Microsc., 206, 170, 10.1046/j.1365-2818.2002.01015.x

Binnig, 1986, Phys. Rev. Lett., 56, 930, 10.1103/PhysRevLett.56.930

A. Vilalta-Clemente and K.Gloystein , Principles of Atomic Force Microscopy (AFM) , in Proceedings of Physics of Advanced Materials Winter School , 2008

Mechler, 2005, Phys. Rev. B: Condens. Matter, 72, 125407, 10.1103/PhysRevB.72.125407

D. Patel , C.Perry and S.Kennedy , Proceedings of SPIE , Optical Components and Materials IV , San Jose, CA , 2007 , vol. 6469 , p. 64690A

Qiu, 2016, Science, 352, 697, 10.1126/science.aad9521

Pitto-Barry, 2015, Dalton Trans., 44, 20308, 10.1039/C5DT03205A

Hubenthal, 2012, Appl. Sci., 2, 566, 10.3390/app2030566

Oćwieja, 2013, J. Nanopart. Res., 15, 1460, 10.1007/s11051-013-1460-5

Hoo, 2008, J. Nanopart. Res., 10, 89, 10.1007/s11051-008-9435-7

Viguié, 2007, Colloids Surf., A, 302, 269, 10.1016/j.colsurfa.2007.02.038

Gu, 2005, Langmuir, 21, 3122, 10.1021/la047843e

De Andrade, 2013, Polimeros, 23, 19, 10.1590/S0104-14282013005000009

Fekete, 2012, J. Nanopart. Res., 14, 1062, 10.1007/s11051-012-1062-7

Akhmadeev, 2014, J. Phys.: Conf. Ser., 560, 12005

Kopaczyńska, 2008, New J. Chem., 32, 1509, 10.1039/b800867a

Muniz-Miranda, 2007, Mater. Sci. Eng., C, 27, 1295, 10.1016/j.msec.2006.06.019

Lu, 2004, J. Mater. Chem., 14, 1005, 10.1039/b314868h

Fan, 2009, Phys. Chem. Chem. Phys., 11, 7381, 10.1039/b904744a

Nie, 1997, Science, 275, 1102, 10.1126/science.275.5303.1102

Raj, 2014, Int. J. Electrochem. Sci., 9, 2090, 10.1016/S1452-3981(23)07913-0

Cordova, 2016, NanoWorld J., 2, 10, 10.17756/nwj.2016-022

Neves, 2010, Nanotechnology, 21, 305706, 10.1088/0957-4484/21/30/305706

Mironov, 2007, J. Surf. Invest., 1, 348, 10.1134/S1027451007030202

Moya, 2015, Nanoscale, 7, 17764, 10.1039/C5NR04424C

Torre, 2011, Sci. Rep., 1, 202, 10.1038/srep00202

Akbari, 2011, Iran. J. Mater. Sci. Eng., 8, 48

Gollwitzer, 2016, Anal. Methods, 8, 5272, 10.1039/C6AY00419A

Sikora, 2016, Langmuir, 32, 2216, 10.1021/acs.langmuir.5b04160

Braun, 2012, J. Nanopart. Res., 14, 1021, 10.1007/s11051-012-1021-3

de Temmerman, 2014, J. Nanopart. Res., 16, 2628, 10.1007/s11051-014-2628-3

Carney, 2011, Nat. Commun., 2, 335, 10.1038/ncomms1338

Bell, 2013, Anal. Methods, 5, 4591, 10.1039/c3ay40771c

Qazi, 2009, J. Colloid Interface Sci., 338, 105, 10.1016/j.jcis.2009.06.006

Ruiz-Baltazar, 2010, MRS Proc., 1275, 27, 10.1557/PROC-1275-S3-P102