Đặc điểm tính chất mài mòn của vật liệu phân lớp chức năng được lắng đọng trên gang bằng công nghệ sản xuất phụ gia hỗ trợ bằng laser

Yongfeng Liu1, Fei Weng2, Guijun Bi2, Youxiang Chew2, Shibo Liu2, Guangyi Ma3, Seung Ki Moon4
1Beijing Key Laboratory of Performance Guarantee on Urban Rail Transit Vehicles, School of Mechanical-Electronic and Automobile Engineering, Beijing University of Civil Engineering and Architecture, Beijing, China
2Joining Technology Group, Singapore Institute of Manufacturing Technology, Singapore, Singapore
3Key Laboratory for Precision and Non-Traditional Machining Technology of Ministry of Education, School of Mechanical Engineering, Dalian University of Technology, Dalian, China
4Singapore Centre for 3D Printing, School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore, Singapore

Tóm tắt

Trong nghiên cứu này, vật liệu phân lớp chức năng (FGM) đã được lắng đọng trên bề mặt gang bằng công nghệ sản xuất phụ gia hỗ trợ bằng laser (LAAM). Hợp kim siêu bền Inconel 625 đã được lắng đọng trên bề mặt như một lớp đệm, sau đó các lớp thép không gỉ 420 (SS420) được chuẩn bị. Vấn đề nứt đã được loại bỏ thành công trong các vật liệu được lắng đọng. Với các tham số quy trình tối ưu, FGM có độ dày lên tới 4,0 mm đã được đạt được mà không có nứt và các khuyết tật rõ ràng khác. Các lớp SS420 cho thấy cấu trúc vi thể dendritic mịn phát triển từ tốc độ làm nguội nhanh của quy trình LAAM. Kết quả thử nghiệm độ mài mòn cho thấy FGM có khả năng chống mài mòn tuyệt vời, đặc biệt là trong điều kiện bôi trơn.

Từ khóa

#vật liệu phân lớp chức năng #sản xuất phụ gia hỗ trợ bằng laser #gang #Inconel #mài mòn #thép không gỉ

Tài liệu tham khảo

Mirhedayatian SM, Vahdat SE, Jelodar MJ, Saen RF (2013) Welding process selection for repairing nodular cast iron engine block by integrated fuzzy data envelopment analysis and TOPSIS approaches. Mater Des 43:272–282. https://doi.org/10.1016/j.matdes.2012.07.010 de Sousa JA, Sales WF, Guesser WL, Machado ÁR (2018) Machinability of rectangular bars of nodular cast iron produced by continuous casting. Int J Adv Manuf Technol 98:2505–2517. https://doi.org/10.1007/s00170-018-2387-x Han S, Huh H (2012) Evaluation of a cast-joining process of dual-metal crankshafts with nodular cast iron and forged steel for medium speed diesel engines. Int J Adv Manuf Technol 63:319–327. https://doi.org/10.1007/s00170-012-3909-6 Sadeghi A, Moloodi A, Golestanipour M, Mahdavi Shahri M (2017) An investigation of abrasive wear and corrosion behavior of surface repair of gray cast iron by SMAW. J Mater Res Technol 6:90–95. https://doi.org/10.1016/j.jmrt.2016.09.003 Tan JC, Looney L, Hashmi MSJ (1999) Component repair using HVOF thermal spraying. J Mater Process Technol 92-93:203–208. https://doi.org/10.1016/S0924-0136(99)00113-2 Champagne V, Helfritch D (2015) Critical assessment 11: structural repairs by cold spray. Mater Sci Technol Lond 31:627–634. https://doi.org/10.1179/1743284714Y.0000000723 Weng F, Chen C, Yu H (2014) Research status of laser cladding on titanium and its alloys: a review. Mater Des 58:412–425. https://doi.org/10.1016/j.matdes.2014.01.077 Sun SD, Barr C, Brandt M (2018) In situ control of tempered martensite during laser cladding repair of aero-grade 300M steel using AISI 420 stainless steel powder. J Laser Appl 30:032502. https://doi.org/10.2351/1.5040629 Aghasibeig M, Fredriksson H (2012) Laser cladding of a featureless iron-based alloy. Surf Coat Technol 209:32–37. https://doi.org/10.1016/j.surfcoat.2012.08.013 Bi G, Ng GKL, Teh KM, Jarfors AE (2010) Feasibility study on the laser aided additive manufacturing of die inserts for liquid forging. Mater Des 31:S112–S116. https://doi.org/10.1016/j.matdes.2009.10.039 Zheng B, Topping T, Smugeresky JE, Zhou Y, Biswas A, Baker D, Lavernia EJ (2010) The influence of Ni-coated TiC on laser-deposited IN625 metal matrix composites. Metall Mater Trans A 41:568–573. https://doi.org/10.1007/s11661-009-0126-5 Mok SH, Bi G, Folkes J, Pashby I (2008) Deposition of Ti-6Al-4V using a high power diode laser and wire, part I: investigation on the process characteristics. Surf Coat Technol 202:3933–3939 Mok SH, Bi G, Folkes J, Pashby I, Segal J (2008) Deposition of Ti-6Al-4V using a high power diode laser and wire, part II: investigation on the mechanical properties. Surf Coat Technol 202:4613–4619. https://doi.org/10.1016/j.surfcoat.2008.03.028 Bi G, Gasser A (2011) Restoration of nickel-base turbine blade knife-edges with controlled laser aided additive manufacturing. Phys Procedia 12:402–409. https://doi.org/10.1016/j.phpro.2011.03.051 Tong X, Li F, Liu M, Dai M, Zhou H (2010) Thermal fatigue resistance of non-smooth cast iron treated by laser cladding with different self-fluxing alloys. Opt Laser Technol 42:1154–1161. https://doi.org/10.1016/j.optlastec.2010.03.001 Liu H, Hao J, Han Z, Yu G, He X, Yang H (2016) Microstructural evolution and bonding characteristic in multi-layer laser cladding of NiCoCr alloy on compacted graphite cast iron. J Mater Process Technol 232:153–164. https://doi.org/10.1016/j.jmatprotec.2016.02.001 Ocelík V, de Oliveira U, de Boer M, de Hosson JTM (2007) Thick Co-based coating on cast iron by side laser cladding: analysis of processing conditions and coating properties. Surf Coat Technol 201:5875–5883. https://doi.org/10.1016/j.surfcoat.2006.10.044 Weng Z, Wang A, Wang Y, Xiong D, Tang H (2016) Diode laser cladding of Fe-based alloy on ductile cast iron and related interfacial behavior. Surf Coat Technol 286:64–71. https://doi.org/10.1016/j.surfcoat.2015.12.031 Yilbas BS, Akhtar SS, Karatas C, Boran K (2016) Laser treatment of dual matrix cast iron with presence of WC particles at the surface: influence of self-annealing on stress fields. Opt Laser Technol 76:6–18. https://doi.org/10.1016/j.optlastec.2015.07.003 Cui C, Guo Z, Wang H, Hu J (2007) In situ TiC particles reinforced grey cast iron composite fabricated by laser cladding of Ni-Ti-C system. J Mater Process Technol 183:380–385. https://doi.org/10.1016/j.jmatprotec.2006.10.031 Da Sun S, Fabijanic D, Barr C, Liu Q, Walker K, Matthews N, Orchowski N et al (2018) In-situ quench and tempering for microstructure control and enhanced mechanical properties of laser cladded AISI 420 stainless steel powder on 300M steel substrates. Surf Coat Technol 333:210–219. https://doi.org/10.1016/j.surfcoat.2017.10.080 Baghjari SH, Akbari Mousavi SAA (2013) Effects of pulsed Nd:YAG laser welding parameters and subsequent post-weld heat treatment on microstructure and hardness of AISI 420 stainless steel. Mater Des 43:1–9. https://doi.org/10.1016/j.matdes.2012.06.027 Branza T, Deschaux-Beaume F, Sierra G, Lours P (2009) Study and prevention of cracking during weld-repair of heat-resistant cast steels. J Mater Process Tech 209:536–547. https://doi.org/10.1016/j.jmatprotec.2008.02.033 Bajwa R, Khan Z, Nazir H, Chacko V, Saeed A (2016) Wear and friction properties of electrodeposited Ni-based coatings subject to nano-enhanced lubricant and composite coating. Acta Metall Sin (Engl Lett) 29:902–910. https://doi.org/10.1007/s40195-016-0470-6 Lestan Z, Milfelner M, Balic J, Brezocnik M, Karabegovic I (2013) Laser deposition of Metco 15E, Colmony 88 and VIM CRU 20 powders on cast iron and low carbon steel. Int J Adv Manuf Technol 66:2023–2028. https://doi.org/10.1007/s00170-012-4478-4 Yan SX, Dong SY, Xu BS, Wang YJ, Ren WB, Fang JX (2014) Effect of molten pool convection on pores and elements distribution in the process of laser cladding. Infrared Laser Eng 43:2832–2839. https://doi.org/10.3969/j.issn.1007-2276.2014.09.009 Yadollahi A, Shamsaei N, Thompson SM, Seely DW (2015) Effects of process time interval and heat treatment on the mechanical and microstructural properties of direct laser deposited 316L stainless steel. Mater Sci Eng A 644:171–183. https://doi.org/10.1016/j.msea.2015.07.056 Baghjari SH, AkbariMousavi SAA (2014) Experimental investigation on dissimilar pulsed Nd:YAG laser welding of AISI 420 stainless steel to kovar alloy. Mater Des 57:128–134. https://doi.org/10.1016/j.matdes.2013.12.050 Sun Z, Zhang CS, Yan MF (2014) Microstructure and mechanical properties of M50NiL steel plasma nitrocarburized with and without rare earths addition. Mater Des 55:128–136. https://doi.org/10.1016/j.matdes.2013.09.030 Cheng X, Xie C (2003) Effect of rare earth elements on the erosion resistance of nitrided 40Cr steel. Wear 254:415–420. https://doi.org/10.1016/S0043-1648(03)00018-8 Barlow LD, Du Toit M (2012) Effect of austenitizing heat treatment on the microstructure and hardness of martensitic stainless steel AISI 420. J Mater Eng Perform 21:1327–1336. https://doi.org/10.1007/s11665-011-0043-9 Quinn TFJ (1983) Review of oxidational wear: part I: the origins of oxidational wear. Tribol Int 16:257–271. https://doi.org/10.1016/0301-679X(83)90086-5 Gates JD (1998) Two-body and three-body abrasion: a critical discussion. Wear 214:139–146. https://doi.org/10.1016/S0043-1648(97)00188-9 Cui XH, Wang SQ, Wang F, Chen KM (2008) Research on oxidation wear mechanism of the cast steels. Wear 265:468–476. https://doi.org/10.1016/j.wear.2007.11.015