Đặc điểm hóa khả năng chịu hạn ở bông Upland (Gossypium hirsutum L.) thông qua việc đánh giá các thuộc tính hình thái, sinh hóa, phân tử và năng suất

Springer Science and Business Media LLC - Tập 46 - Trang 1-14 - 2023
Muhammad Saeed1,2, Muhammad Naeem2, Alia Javed2, Shagufta Perveen2, Iqra Sajjad2, Muhammad Zaid Yousaf2, M. Shahid Munir Chohan3, Muhammad Riaz3,4, Sana Ullah5, Xianliang Song6
1Department of Agricultural Sciences, College of Agriculture and Environmental Sciences, Faculty of Life Sciences, Government College University Faisalabad, Faisalabad, Pakistan
2Department of Botany, Faculty of Life Sciences, Government College University Faisalabad, Faisalabad, Pakistan
3Cotton Research Station, Ayub Agricultural Research Institute (AARI), Faisalabad, Pakistan
4Vegetable Research Institute, Ayub Agricultural Research Institute (AARI), Faisalabad, Pakistan
5Department of Bioinformatics and Biotechnology, Faculty of Life Sciences, Government College University Faisalabad, Faisalabad, Pakistan
6State Key Laboratory of Crop Biology/Agronomy College, Shandong Agricultural University, Taian, China

Tóm tắt

Bông Upland (Gossypium hirsutum L.) là một loại cây trồng quan trọng trên thế giới do khả năng sản xuất sợi tự nhiên. Do biến đổi khí hậu, sản lượng của cây bị ảnh hưởng bởi sự xuất hiện thường xuyên của các điều kiện thiếu nước trong giai đoạn sinh trưởng. Năm giống bông, cụ thể là FH-114, FH-142, FH-152, CIM-473 và CIM-496, đã được đánh giá trong điều kiện tưới hạn chế để xác định khả năng chịu hạn. Dữ liệu đã được ghi nhận về chiều cao cây, hàm lượng các thông số sinh hóa (carotenoid, chlorophyll, sáp, proline) và năng suất bông hạt trên mỗi cây. Vật liệu thực vật đã được genotyp hóa bằng 23 dấu hiệu lặp lại chuỗi đơn (SSR) có tính đa hình cao. Các giống bông, CIM-473 và FH-142, với hàm lượng carotenoid, chlorophyll, sáp bề mặt và proline cao hơn, đã duy trì sự phát triển và tăng trưởng sinh dưỡng ổn định nhờ vào cơ chế điều chỉnh thẩm thấu; quá trình quang hợp và hiệu suất quang hóa tối ưu; và duy trì sự cân bằng trong trao đổi chất C/N và ổn định năng lượng; điều này dẫn đến năng suất bông hạt tốt hơn (>30% so với các giống nhạy với hạn) trong điều kiện tưới hạn chế. Những mối liên kết đáng kể giữa các dấu hiệu DNA lặp lại chuỗi đơn với chiều cao cây, hàm lượng carotenoid, hàm lượng chlorophyll, hàm lượng sáp và năng suất bông hạt đã được xác định. Đặc biệt, các dấu hiệu ADN BNL1153 (nhiễm sắc thể 25) và BNL3031 (nhiễm sắc thể 9) có thể là những dấu hiệu kề cạnh các gen tham gia vào quá trình tổng hợp các protein/enzym (như protein phong phú trong phôi muộn; chaperones; chất chống oxy hóa; L-ascorbate peroxidase; enzym tham gia vào quá trình tổng hợp ABA, proline, carotenoids và sáp bề mặt) xúc tác các con đường chuyển hóa dẫn đến khả năng chịu hạn ở bông và do đó sẽ là nguồn tài nguyên quý giá cho các chương trình chọn giống phân tử nhằm phát triển các giống bông chịu hạn.

Từ khóa

#bông Upland #Gossypium hirsutum #khả năng chịu hạn #các thuộc tính sinh hóa #chọn giống phân tử

Tài liệu tham khảo

Abd El-Mageed TA, Shaaban A, Abd El-Mageed SA, Semida WM, Rady MOA (2021) Silicon defensive role in maize (Zea mays L.) against drought stress and metals-contaminated irrigation water. SILICON 13:2165–2176 Abdelkader MA, El-Gabry YA, Sayed AN, Shahin MG, Darwish HA, Aboukota ME, Hashem FA, Abd-Elrahman SH (2022) Evaluation of physio-biochemical criteria in maize inbred lines and their F1 hybrids grown under water-deficit conditions. Ann Agric Sci 67(2):220–231 Abdelraheem A, Esmaeili N, O’Connell M, Zhang J (2019) Progress and perspective on drought and salt stress tolerance in cotton. Ind Crops Prod 130:118–129 Ahmadikhah A, Marufinia A (2016) Effect of reduced plant height on drought tolerance in rice. 3 Biotech 6:221 Al-Babili S, Bouwmeester HJ (2015) Strigolactones, a novel carotenoid-derived plant hormone. Annu Rev Plant Biol 66:161–186 Arnon DI (1949) Copper enzymes in isolated chloroplasts. Polyphenoloxidase in Beta vulgaris. Plant Physiol 24:1–15 Aziz I, Khan MA (2001) Experimental assessment of salinity tolerance of Ceriops tagal seedlings and saplings from the Indus delta, Pakistan. Aquat Bot 70:259–268 Bangar P, Chaudhury A, Tiwari B, Kumar S, Kumari R, Bhat KV (2019) Morphophysiological and biochemical response of mungbean [Vigna radiata (L.) Wilczek] varieties at different developmental stages under drought stress. Turk J Biol 43:58–69 Baslam M, Mitsui T, Sueyoshi K, Ohyama T (2021) Recent advances in carbon and nitrogen metabolism in C3 plants. Int J Mol Sci 22:318 Bates LS, Waldren RP, Teare ID (1973) Rapid determination of free proline for water stress studies. Plant Soil 39:205–207 Behera PK, Kumar V, Sharma SS, Lenka SK, Panda D (2023) Genotypic diversity and abiotic stress response profiling of short-grain aromatic landraces of rice (Oryza sativa L. Indica). Curr Plant Biol 33:100269 Bi H, Luang S, Li Y, Bazanova N, Morran S, Song Z, Perera MA, Hrmova M, Borisjuk N, Lopato S (2016) Identification and characterization of wheat drought-responsive MYB transcription factors involved in the regulation of cuticle biosynthesis. J Exp Bot 67:5363–5380 Blum A (1988) Plant breeding for stress environments. CRC Press, Boca Raton Bondada BR, Oosterhuis D, Murphy JB, Kims KS (1995) Effect of water stress on the epicuticular wax composition and ultrastructure of cotton (Gossypium hirsutum L.) leaf, bract and boll. Environ Exp Bot 36(1):61–69 Botstein D, White RL, Skolnick M, Davis RW (1980) Construction of a genetic linkage map in man using restriction fragment length polymorphisms. Am J Hum Genet 32:314–331 Bourdenx B, Bernard A, Domergue F et al (2011) Overexpression of Arabidopsis ECERIFERUM1 promotes wax very-long-chain alkane biosynthesis and influences plant response to biotic and abiotic stresses. Plant Physiol 156:29–45 Boyer JS (1982) Plant productivity and environment. Science 218(4571):443–448 Bradbury PJ, Zhang Z, Kroon DE, Casstevens TM, Ramdoss Y, Buckler ES (2007) TASSEL: software for association mapping of complex traits in diverse samples. Bioinformatics 23(19):2633–2635 Bray EA (2002) Classification of genes differentially expressed during water-deficit stress in Arabidopsis thaliana: an analysis using microarray and differential expression data. Ann Bot 89(7):803–811 Cameron KD, Teece MA, Smart LB (2006) Increased accumulation of cuticular wax and expression of lipid transfer protein in response to periodic drying events in leaves of tree tobacco. Plant Physiol 140:176–183 Chaves MM, Maroco JP, Periera JS (2003) Understanding plant responses to drought - from genes to the whole plant. Funct Plant Biol 30(3):239–264 Chimenti CA, Pearson J, Hall AJ (2002) Osmotic adjustment and yield maintenance under drought in sunflower. Field Crops Res 75(2–3):235–246 Choudhary AK, Sultana R, Vales MI, Saxena KB, Kumar RR, Kumar PR (2018) Integrated physiological and molecular approaches to improvement of abiotic stress tolerance in two pulse crops of the semi-arid tropics. Crop J 6:99–114 Chun SC, Paramasivan M, Chandrasekaran M (2018) Proline accumulation influenced by osmotic stress in arbuscular mycorrhizal symbiotic plants. Front Microbiol 9:2525 Cominelli E, Sala T, Calvi D, Gusmaroli G, Tonelli C (2008) Over-expression of the Arabidopsis AtMYB41 gene alters cell expansion and leaf surface permeability. Plant J 53:53–64 dos Santos TB, Ribas AF, de Souza SGH, Budzinski IGF, Domingues DS (2022) Physiological responses to drought, salinity, and heat stress in plants: a review. Stresses 2:113–135 Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software structure: a simulation study. Mol Ecol 14:2611–2620 Fabro G, Kovacs I, Pavet V, Szabados L, Alvarez ME (2004) Proline accumulation and AtP5CS2 gene activation are induced by plant-pathogen incompatible interactions in Arabidopsis. Mol Plant Microbe Interact 17:343–350 Fahad S, Bajwa AA, Nazir U, Anjum SA, Farooq A, Zohaib A, Sadia S, Nasim W, Adkins S, Saud S, Ihsan MZ, Alharby H, Wu C, Wang D, Huang J (2017) Crop production under drought and heat stress: Plant responses and management options. Front Plant Sci 8:1147 Farooq M, Wahid A, Kobayashi N, Fujita D, Basra SMA (2009) Plant drought stress: effects, mechanisms and management. Agron Sust Dev 29:185–212 Forster BP, Ellis RP, Moir J, Talame V, Sanguineti MC, Tuberosa R, This D, Teulat B, Ahmed I, Mariy SAEE, Bahri H, El-Ouahabi M, Zoumarou-Wallis N, El-Fellah MM, Salem BEN (2004) Genotype and phenotype associations with drought tolerance in barley tested in North Africa. Ann Appl Biol 144:157–168 Guo J, Xu W, Yu X, Shen H, Li H, Cheng D, Liu A, Liu J, Liu C, Zhao S, Song J (2016) Cuticular wax accumulation is associated with drought tolerance in wheat near-isogenic lines. Front Plant Sci 7:1809 Hoekstra FA, Golovina EA, Buitink J (2001) Mechanisms of plant desiccation tolerance. Trends Plant Sci 6:431–438 Jäger K, Fábián A, Eitel G, Szabó L, Deák C, Barnabás B, Papp I (2014) A morpho-physiological approach differentiates bread wheat cultivars of contrasting tolerance under cyclic water stress. J Plant Physiol 171:1256–1266 Joubès J, Raffaele S, Bourdenx B, Garcia C, Laroche-Traineau J, Moreau P, Domergue F, Lessire R (2008) The VLCFA elongase gene family in Arabidopsis thaliana: phylogenetic analysis, 3D modelling and expression profiling. Plant Mol Biol 67:547–566 Khan A, Pan X, Najeeb U (2018) Coping with drought: stress and adaptive mechanisms, and management through cultural and molecular alternatives in cotton as vital constituents for plant stress resilience and fitness. Biol Res 51:47 Kosma DK, Bourdenx B, Bernard A, Parsons EP, Lü S, Joubès J, Jenks MA (2009) The impact of water deficiency on leaf cuticle lipids of Arabidopsis. Plant Physiol 151:1918–1929 le Roux M-SL, Burger NFV, Vlok M, Kunert KJ, Cullis CA, Botha A-M (2020) Wheat line “RYNO3936” is associated with delayed water stress-induced leaf senescence and rapid water-deficit stress recovery. Front Plant Sci 11:1053 Lehmann S, Funck D, Szabados L, Rentsch D (2010) Proline metabolism and transport in plant development. Amino Acids 39:949–962 Li H, Mo Y, Cui Q, Yang X, Guo Y, Wei C, Yang J, Zhang Y, Ma J, Zhang X (2019a) Transcriptomic and physiological analyses reveal drought adaptation strategies in drought-tolerant and -susceptible watermelon genotypes. Plant Sci 278:32–43 Li H-M, Liu S-D, Ge C-W, Zhang X-M, Zhang S-P, Chen J, Shen Q, Ju F-Y, Yang Y-F, Li Y, Liu R-H, Ma H-J, Zhao X-H, Li C-D, Pang C-Y (2019b) Analysis of drought tolerance and associated traits in Upland cotton at the seedling stage. Int J Mol Sci 20:3888 Li X, Liu N, Sun Y, Wang P, Ge X, Pei Y, Liu D, Ma X, Li F, Yuxia Hou Y (2019c) The cotton GhWIN2 gene activates the cuticle biosynthesis pathway and influences the salicylic and jasmonic acid biosynthesis pathways. BMC Plant Biol 19:379 Liu L, Wang X, Chang C (2022) Toward a smart skin: harnessing cuticle biosynthesis for crop adaptation to drought, salinity, temperature, and ultraviolet stress. Front Plant Sci 13:961829 Lu SY, Chen CH, Wang ZC, Guo ZF, Li HH (2009) Physiological responses of somaclonal variants of triploid bermudagrass (Cynodon transvaalensis × Cynodon dactylon) to drought stress. Plant Cell Rep 28:517–526 Lv X, Li Y, Chen R, Rui M, Wang Y (2023) Stomatal responses of two drought-tolerant barley varieties with different ROS regulation strategies under drought conditions. Antioxidants 12:790 Magwanga RO, Lu P, Kirungu JN, Lu H, Wang X, Cai X, Zhou Z, Zhang Z, Salih H, Wang K, Liu F (2018) Characterization of the late embryogenesis abundant (LEA) proteins family and their role in drought stress tolerance in upland cotton. BMC Genet 19:6 Malik TA, Malik S (2006) Genetic linkage studies of drought tolerant and agronomic traits in cotton. Pak J Bot 38(5):1613–1619 Mansoor S, Khan T, Farooq I, Shah LR, Sharma V, Sonne C, Rinklebe J, Ahmad P (2022) Drought and global hunger: biotechnological interventions in sustainability and management. Planta 256:97 Medeiros CD, Falcão HM, Almeida-Cortez J, Santos DYAC, Oliveira AFM, Santos MG (2017) Leaf epicuticular wax content changes under different rainfall regimes, and its removal affects the leaf chlorophyll content and gas exchanges of Aspidosperma pyrifolium in a seasonally dry tropical forest. S Afr J Bot 111:267–274 Mofatto LS, Carneiro Fde A, Vieira NG, Duarte KE, Vidal RO, Alekcevetch JC, Cotta MG, Verdeil JL, Lapeyre-Montes F, Lartaud M, Leroy T, De Bellis F, Pot D, Rodrigues GC, Carazzolle MF, Pereira GA, Andrade AC, Marraccini P (2016) Identification of candidate genes for drought tolerance in coffee by high-throughput sequencing in the shoot apex of different Coffea Arabica cultivars. BMC Plant Biol 16:94 Moinuddin FRA, Sayre KD, Reynolds MP (2005) Osmotic adjustment in wheat in relation to grain yield under water deficit environments. Agron J 97(4):1062–1071 Monda K, Mabuchi A, Negi J, Iba K (2021) Cuticle permeability is an important parameter for the trade-off strategy between drought tolerance and CO2 uptake in land plants. Plant Signal Behav 16:e1908692 Munns R, Tester M (2008) Mechanisms of salinity tolerance. Annu Rev Plant Biol 59:651–681 Mwadzingeni L, Shimelis H, Tesfay S, Tsilo TJ (2016) Screening of bread wheat genotypes for drought tolerance using phenotypic and proline analyses. Front Plant Sci 7:1276 Niknam SR, Ma Q, Turner DW (2003) Osmotic adjustment and seed yield of Brassica napus and B. juncea genotypes in a water-limited environment in south-western Australia. Aust J Exp Agric 43(9):1127–1135 Oguz MC, Aycan M, Oguz E, Poyraz I, Yildiz M (2022) Drought stress tolerance in plants: Interplay of molecular, biochemical and physiological responses in important development stages. Physiologia 2:180–197 Oosterhuis DM (1990) Growth and development of cotton. In: Nitrogen nutrition of cotton: practical issues, pp 1–24 Ozturk M, Unal BT, García-Caparrós P, Khursheed A, Gul A, Hasanuzzaman M (2021) Osmoregulation and its actions during the drought stress in plants. Physiol Plant 172:1321–1335 Pan L, Yang Z, Wang J, Wang P, Ma X, Zhou M, Li J, Gang N, Feng G, Zhao J, Zhang X (2017) Comparative proteomic analyses reveal the proteome response to short-term drought in Italian ryegrass (Lolium multiflorum). PLoS ONE 12(9):e0184289 Panikashvili D, Shi JX, Bocobza S, Franke RB, Schreiber L, Aharoni A (2010) The Arabidopsis DSO/ABCG11 transporter affects cutin metabolism in reproductive organs and suberin in roots. Mol Plant 3:563–575 Parry MAJ, Flexas J, Medrano H (2005) Prospects for crop production under drought: Research priorities and future directions. Ann Appl Biol 147(3):211–226 Paterson AH, Brubaker CL, Wendel JF (1993) A rapid method for extraction of cotton (Gossypium spp.) genomic DNA suitable for RFLP or PCR analysis. Plant Mol Biol Rep 11(2):122–127 Peakall R, Smouse PE (2012) GenAlEx 6.5: genetic analysis in Excel. Population genetic software for teaching and research—an update. Bioinformatics 28:2537–2539 Pereira S, Figueiredo-Lima K, Oliveira AFM, Santos MG (2019) Changes in foliar epicuticular wax and photosynthesis metabolism in evergreen woody species under different soil water availability. Photosynthetica 57:192–201 Perrier X, Jacquemoud-Collet J (2006) DARwin software: dissimilarity analysis and representation for windows. http://darwin.cirad.fr. Accessed 1 Nov 2022 Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155(2):945–959 Quevedo YM, Moreno LP, Barragán E (2022) Predictive models of drought tolerance indices based on physiological, morphological and biochemical markers for the selection of cotton (Gossypium hirsutum L.) varieties. J Integr Agric 21(5):1310–1320 Sabella E, Aprile A, Negro C, Nicolì F, Nutricati E, Vergine M, Luvisi A, de Bellis L (2020) Impact of climate change on durum wheat yield. Agronomy 10:793 Saeed M, Guo W, Ullah I, Tabbasam N, Zafar Y, Rahman M, Zhang T (2011) QTL mapping for physiology, yield and plant architecture traits in cotton (Gossypium hirsutum L.) grown under well-watered versus water-stress conditions. Electron J Biotechnol 14(3):3 Saeed M, Guo W, Zhang T (2014) Association mapping for salinity tolerance in cotton (Gossypium hirsutum L.) germplasm from US and diverse regions of China. Aust J Crop Sci 8(3):338–346 Sah RP, Chakraborty M, Prasad K, Pandit M, Tudu VK, Chakravarty MK, Narayan SC, Rana M, Moharana D (2020) Impact of water deficit stress in maize: phenology and yield components. Sci Rep 10:2944 Salehi-Lisar SY, Bakhshayeshan-Agdam H (2016) Drought stress in plants: causes, consequences, and tolerance, vol 1. Springer, Berlin, pp 1–16 Saneoka H, Ogata S (1987) Relationship between water use efficiency and cuticular wax deposition in warm season forage crops grown under water deficit conditions. Soil Sci Plant Nutr 33(3):439–448 Sarabi V, Arjmand-Ghajur E (2021) Exogenous plant growth regulators/plant growth promoting bacteria roles in mitigating water-deficit stress on chicory (Cichorium pumilum Jacq.) at a physiological level. Agric Water Manag 245:106439 Schuster A, Burghardt M, Alfarhan A, Bueno A, Hedrich R, Leide J, Thomas J, Riederer M (2016) Effectiveness of cuticular transpiration barriers in a desert plant at controlling water loss at high temperatures. AoB Plants 8:plw027 Seleiman MF, Al-Suhaibani N, Ali N, Akmal M, Alotaibi M, Refay Y, Dindaroglu T, Abdul-Wajid HH, Battaglia ML (2021) Drought stress impacts on plants and different approaches to alleviate its adverse effects. Plants 10(2):259 Seo PJ, Lee SB, Suh MC, Park M-J, Go YS, Park C-M (2011) The MYB96 transcription factor regulates cuticular wax biosynthesis under drought conditions in Arabidopsis. Plant Cell 23:1138–1152 Sharma SS, Dietz KJ (2009) The relationship between metal toxicity and cellular redox imbalance. Trends Plant Sci 14:43–50 Shiraku ML, Magwanga RO, Zhang Y, Hou Y, Kirungu JN, Mehari TG, Xu Y, Wang Y, Wang K, Cai X, Zhou Z, Liu F (2022) Late embryogenesis abundant gene LEA3 (Gh_A08G0694) enhances drought and salt stress tolerance in cotton. Int J Biol Macromol 207:700–714 Sultana R, Choudhary AK, Pal AK, Saxena KB, Prasad BD, Singh RG (2014) Abiotic stresses in major pulses: current status and strategies. In: Gaur RK, Sharma P (eds) Approaches to plant stress and their management. Springer, New Delhi, pp 173–190 Sun T, Rao S, Zhou X, Li L (2022) Plant carotenoids: recent advances and future perspectives. Mol Hortic 2:3 Szabados L, Savoure A (2010) Proline: a multifunctional amino acid. Trends Plant Sci 15:89–97 Tamirat W (2019) Review on role of proline on coffee under drought conditions. J Environ Earth Sci 9:10 Ullah A, Sun H, Yang X, Zhang X (2017) Drought coping strategies in cotton: increased crop per drop. Plant Biotechnol J 15:271–284 Verbruggen N, Hermans C (2008) Proline accumulation in plants: a review. Amino Acids 35:753–759 Verslues PE, Sharma S (2010) Proline metabolism and its implications for plant-environment interaction. Arabidopsis Book 8:e0140 Verslues PE, Agarwal M, Katiyar-Agarwal S, Zhu JH, Zhu JK (2006) Methods and concepts in quantifying resistance to drought, salt and freezing, abiotic stresses that affect plant water status. Plant J 45:523–539 Vieira EA, Silva MDG, Gomes ADS, Urakawa AH, Barros AL (2021) Carbon-nitrogen metabolism and oxidative stress in young plants of Dipteryx alata Vog. subjected to seasonal water regimes in the Cerrado. Environ Exp Bot 183:104361 Wang Z-Y, Xiong L, Li W, Zhu J-K, Zhu J (2011) The plant cuticle is required for osmotic stress regulation of abscisic acid biosynthesis and osmotic stress tolerance in Arabidopsis. Plant Cell 23:1971–1984 Wang Z, Li G, Sun H, Ma L, Guo Y, Zhao Z, Gao H, Mei L (2018) Effects of drought stress on photosynthesis and photosynthetic electron transport chain in young apple tree leaves. Biol Open 7:bio035279 Wang Y, Jin S, Xu Y, Li S, Zhang S, Yuan Z, Li J, Ni Y (2020) Overexpression of BnKCS1-1, BnKCS1-2, and BnCER1-2 promotes cuticular wax production and increases drought tolerance in Brassica napus. Crop J 8:26–37 Wang Z, Yang Y, Yadav V, Zhao W, He Y, Zhang X, Wei C (2022) Drought-induced proline is mainly synthesized in leaves and transported to roots in watermelon under water deficit. Hortic Plant J 8(5):615–626 Xiong Y, Xiong Y, Shu X, Yu Q, Lei X, Li D, Yan J, Bai S, Ma X (2022) Molecular phylogeography and intraspecific divergences in Siberian wildrye (Elymus sibiricus L.) wild populations in China, inferred from chloroplast DNA sequence and cpSSR markers. Front Plant Sci 13:862759 Xu P, Chukhutsina VU, Nawrocki WJ, Schansker G, Bielczynski LW, Lu Y, Karcher D, Bock R, Croce R (2020) Photosynthesis without beta-carotene. Elife 9:e58984 Xue D, Zhang X, Lu X, Chen G, Chen Z-H (2017) Molecular and evolutionary mechanisms of cuticular wax for plant drought tolerance. Front Plant Sci 8:621 Yancey PH (2005) Organic osmolytes as compatible, metabolic and counteracting cytoprotectants in high osmolarity and other stresses. J Exp Biol 208:2819–2830 Yang F, Han Y, Zhu Q-H, Zhang X, Xue F, Li Y, Luo H, Qin J, Sun J, Liu F (2022) Impact of water deficiency on leaf cuticle lipids and gene expression networks in cotton (Gossypium hirsutum L.). BMC Plant Biol 22:404 Yeats TH, Rose JKC (2013) The formation and function of plant cuticles. Plant Physiol 163:5–20 Zahid Z, Khan MKR, Hameed A, Akhtar M, Ditta A, Hassan HM, Farid G (2021) Dissection of drought tolerance in Upland cotton through morpho-physiological and biochemical traits at seedling stage. Front Plant Sci 12:627107 Zeisler V, Schreiber L (2016) Epicuticular wax on cherry laurel (Prunus laurocerasus) leaves does not constitute the cuticular transpiration barrier. Planta 243:65–81 Zhang Q, Zhang X, Yang Y, Xu L, Feng J, Wang J, Tang Y, Pei X, Zhao X (2022) Genetic diversity of Juglans mandshurica populations in Northeast China based on SSR markers. Front Plant Sci 13:931578 Zhao B, Liu Z, Ata-Ul-Karim ST, Xiao J, Liu Z, Qi A, Duan A (2016) Rapid and nondestructive estimation of the nitrogen nutrition index in winter barley using chlorophyll measurements. Field Crops Res 185:59–68 Zheng Z-L (2009) Carbon and nitrogen nutrient balance signaling in plants. Plant Signal Behav 4:584–591 Zhou X, Li L, Xiang J, Gao G, Xu F, Liu A, Zhang X, Peng Y, Chen X, Wan X (2015) OsGL1-3 is involved in cuticular wax biosynthesis and tolerance to water deficit in rice. PLoS ONE 10:e116676