Nội dung được dịch bởi AI, chỉ mang tính chất tham khảo
Đặc điểm hóa khả năng chịu hạn ở bông Upland (Gossypium hirsutum L.) thông qua việc đánh giá các thuộc tính hình thái, sinh hóa, phân tử và năng suất
Tóm tắt
Bông Upland (Gossypium hirsutum L.) là một loại cây trồng quan trọng trên thế giới do khả năng sản xuất sợi tự nhiên. Do biến đổi khí hậu, sản lượng của cây bị ảnh hưởng bởi sự xuất hiện thường xuyên của các điều kiện thiếu nước trong giai đoạn sinh trưởng. Năm giống bông, cụ thể là FH-114, FH-142, FH-152, CIM-473 và CIM-496, đã được đánh giá trong điều kiện tưới hạn chế để xác định khả năng chịu hạn. Dữ liệu đã được ghi nhận về chiều cao cây, hàm lượng các thông số sinh hóa (carotenoid, chlorophyll, sáp, proline) và năng suất bông hạt trên mỗi cây. Vật liệu thực vật đã được genotyp hóa bằng 23 dấu hiệu lặp lại chuỗi đơn (SSR) có tính đa hình cao. Các giống bông, CIM-473 và FH-142, với hàm lượng carotenoid, chlorophyll, sáp bề mặt và proline cao hơn, đã duy trì sự phát triển và tăng trưởng sinh dưỡng ổn định nhờ vào cơ chế điều chỉnh thẩm thấu; quá trình quang hợp và hiệu suất quang hóa tối ưu; và duy trì sự cân bằng trong trao đổi chất C/N và ổn định năng lượng; điều này dẫn đến năng suất bông hạt tốt hơn (>30% so với các giống nhạy với hạn) trong điều kiện tưới hạn chế. Những mối liên kết đáng kể giữa các dấu hiệu DNA lặp lại chuỗi đơn với chiều cao cây, hàm lượng carotenoid, hàm lượng chlorophyll, hàm lượng sáp và năng suất bông hạt đã được xác định. Đặc biệt, các dấu hiệu ADN BNL1153 (nhiễm sắc thể 25) và BNL3031 (nhiễm sắc thể 9) có thể là những dấu hiệu kề cạnh các gen tham gia vào quá trình tổng hợp các protein/enzym (như protein phong phú trong phôi muộn; chaperones; chất chống oxy hóa; L-ascorbate peroxidase; enzym tham gia vào quá trình tổng hợp ABA, proline, carotenoids và sáp bề mặt) xúc tác các con đường chuyển hóa dẫn đến khả năng chịu hạn ở bông và do đó sẽ là nguồn tài nguyên quý giá cho các chương trình chọn giống phân tử nhằm phát triển các giống bông chịu hạn.
Từ khóa
#bông Upland #Gossypium hirsutum #khả năng chịu hạn #các thuộc tính sinh hóa #chọn giống phân tửTài liệu tham khảo
Abd El-Mageed TA, Shaaban A, Abd El-Mageed SA, Semida WM, Rady MOA (2021) Silicon defensive role in maize (Zea mays L.) against drought stress and metals-contaminated irrigation water. SILICON 13:2165–2176
Abdelkader MA, El-Gabry YA, Sayed AN, Shahin MG, Darwish HA, Aboukota ME, Hashem FA, Abd-Elrahman SH (2022) Evaluation of physio-biochemical criteria in maize inbred lines and their F1 hybrids grown under water-deficit conditions. Ann Agric Sci 67(2):220–231
Abdelraheem A, Esmaeili N, O’Connell M, Zhang J (2019) Progress and perspective on drought and salt stress tolerance in cotton. Ind Crops Prod 130:118–129
Ahmadikhah A, Marufinia A (2016) Effect of reduced plant height on drought tolerance in rice. 3 Biotech 6:221
Al-Babili S, Bouwmeester HJ (2015) Strigolactones, a novel carotenoid-derived plant hormone. Annu Rev Plant Biol 66:161–186
Arnon DI (1949) Copper enzymes in isolated chloroplasts. Polyphenoloxidase in Beta vulgaris. Plant Physiol 24:1–15
Aziz I, Khan MA (2001) Experimental assessment of salinity tolerance of Ceriops tagal seedlings and saplings from the Indus delta, Pakistan. Aquat Bot 70:259–268
Bangar P, Chaudhury A, Tiwari B, Kumar S, Kumari R, Bhat KV (2019) Morphophysiological and biochemical response of mungbean [Vigna radiata (L.) Wilczek] varieties at different developmental stages under drought stress. Turk J Biol 43:58–69
Baslam M, Mitsui T, Sueyoshi K, Ohyama T (2021) Recent advances in carbon and nitrogen metabolism in C3 plants. Int J Mol Sci 22:318
Bates LS, Waldren RP, Teare ID (1973) Rapid determination of free proline for water stress studies. Plant Soil 39:205–207
Behera PK, Kumar V, Sharma SS, Lenka SK, Panda D (2023) Genotypic diversity and abiotic stress response profiling of short-grain aromatic landraces of rice (Oryza sativa L. Indica). Curr Plant Biol 33:100269
Bi H, Luang S, Li Y, Bazanova N, Morran S, Song Z, Perera MA, Hrmova M, Borisjuk N, Lopato S (2016) Identification and characterization of wheat drought-responsive MYB transcription factors involved in the regulation of cuticle biosynthesis. J Exp Bot 67:5363–5380
Blum A (1988) Plant breeding for stress environments. CRC Press, Boca Raton
Bondada BR, Oosterhuis D, Murphy JB, Kims KS (1995) Effect of water stress on the epicuticular wax composition and ultrastructure of cotton (Gossypium hirsutum L.) leaf, bract and boll. Environ Exp Bot 36(1):61–69
Botstein D, White RL, Skolnick M, Davis RW (1980) Construction of a genetic linkage map in man using restriction fragment length polymorphisms. Am J Hum Genet 32:314–331
Bourdenx B, Bernard A, Domergue F et al (2011) Overexpression of Arabidopsis ECERIFERUM1 promotes wax very-long-chain alkane biosynthesis and influences plant response to biotic and abiotic stresses. Plant Physiol 156:29–45
Boyer JS (1982) Plant productivity and environment. Science 218(4571):443–448
Bradbury PJ, Zhang Z, Kroon DE, Casstevens TM, Ramdoss Y, Buckler ES (2007) TASSEL: software for association mapping of complex traits in diverse samples. Bioinformatics 23(19):2633–2635
Bray EA (2002) Classification of genes differentially expressed during water-deficit stress in Arabidopsis thaliana: an analysis using microarray and differential expression data. Ann Bot 89(7):803–811
Cameron KD, Teece MA, Smart LB (2006) Increased accumulation of cuticular wax and expression of lipid transfer protein in response to periodic drying events in leaves of tree tobacco. Plant Physiol 140:176–183
Chaves MM, Maroco JP, Periera JS (2003) Understanding plant responses to drought - from genes to the whole plant. Funct Plant Biol 30(3):239–264
Chimenti CA, Pearson J, Hall AJ (2002) Osmotic adjustment and yield maintenance under drought in sunflower. Field Crops Res 75(2–3):235–246
Choudhary AK, Sultana R, Vales MI, Saxena KB, Kumar RR, Kumar PR (2018) Integrated physiological and molecular approaches to improvement of abiotic stress tolerance in two pulse crops of the semi-arid tropics. Crop J 6:99–114
Chun SC, Paramasivan M, Chandrasekaran M (2018) Proline accumulation influenced by osmotic stress in arbuscular mycorrhizal symbiotic plants. Front Microbiol 9:2525
Cominelli E, Sala T, Calvi D, Gusmaroli G, Tonelli C (2008) Over-expression of the Arabidopsis AtMYB41 gene alters cell expansion and leaf surface permeability. Plant J 53:53–64
dos Santos TB, Ribas AF, de Souza SGH, Budzinski IGF, Domingues DS (2022) Physiological responses to drought, salinity, and heat stress in plants: a review. Stresses 2:113–135
Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software structure: a simulation study. Mol Ecol 14:2611–2620
Fabro G, Kovacs I, Pavet V, Szabados L, Alvarez ME (2004) Proline accumulation and AtP5CS2 gene activation are induced by plant-pathogen incompatible interactions in Arabidopsis. Mol Plant Microbe Interact 17:343–350
Fahad S, Bajwa AA, Nazir U, Anjum SA, Farooq A, Zohaib A, Sadia S, Nasim W, Adkins S, Saud S, Ihsan MZ, Alharby H, Wu C, Wang D, Huang J (2017) Crop production under drought and heat stress: Plant responses and management options. Front Plant Sci 8:1147
Farooq M, Wahid A, Kobayashi N, Fujita D, Basra SMA (2009) Plant drought stress: effects, mechanisms and management. Agron Sust Dev 29:185–212
Forster BP, Ellis RP, Moir J, Talame V, Sanguineti MC, Tuberosa R, This D, Teulat B, Ahmed I, Mariy SAEE, Bahri H, El-Ouahabi M, Zoumarou-Wallis N, El-Fellah MM, Salem BEN (2004) Genotype and phenotype associations with drought tolerance in barley tested in North Africa. Ann Appl Biol 144:157–168
Guo J, Xu W, Yu X, Shen H, Li H, Cheng D, Liu A, Liu J, Liu C, Zhao S, Song J (2016) Cuticular wax accumulation is associated with drought tolerance in wheat near-isogenic lines. Front Plant Sci 7:1809
Hoekstra FA, Golovina EA, Buitink J (2001) Mechanisms of plant desiccation tolerance. Trends Plant Sci 6:431–438
Jäger K, Fábián A, Eitel G, Szabó L, Deák C, Barnabás B, Papp I (2014) A morpho-physiological approach differentiates bread wheat cultivars of contrasting tolerance under cyclic water stress. J Plant Physiol 171:1256–1266
Joubès J, Raffaele S, Bourdenx B, Garcia C, Laroche-Traineau J, Moreau P, Domergue F, Lessire R (2008) The VLCFA elongase gene family in Arabidopsis thaliana: phylogenetic analysis, 3D modelling and expression profiling. Plant Mol Biol 67:547–566
Khan A, Pan X, Najeeb U (2018) Coping with drought: stress and adaptive mechanisms, and management through cultural and molecular alternatives in cotton as vital constituents for plant stress resilience and fitness. Biol Res 51:47
Kosma DK, Bourdenx B, Bernard A, Parsons EP, Lü S, Joubès J, Jenks MA (2009) The impact of water deficiency on leaf cuticle lipids of Arabidopsis. Plant Physiol 151:1918–1929
le Roux M-SL, Burger NFV, Vlok M, Kunert KJ, Cullis CA, Botha A-M (2020) Wheat line “RYNO3936” is associated with delayed water stress-induced leaf senescence and rapid water-deficit stress recovery. Front Plant Sci 11:1053
Lehmann S, Funck D, Szabados L, Rentsch D (2010) Proline metabolism and transport in plant development. Amino Acids 39:949–962
Li H, Mo Y, Cui Q, Yang X, Guo Y, Wei C, Yang J, Zhang Y, Ma J, Zhang X (2019a) Transcriptomic and physiological analyses reveal drought adaptation strategies in drought-tolerant and -susceptible watermelon genotypes. Plant Sci 278:32–43
Li H-M, Liu S-D, Ge C-W, Zhang X-M, Zhang S-P, Chen J, Shen Q, Ju F-Y, Yang Y-F, Li Y, Liu R-H, Ma H-J, Zhao X-H, Li C-D, Pang C-Y (2019b) Analysis of drought tolerance and associated traits in Upland cotton at the seedling stage. Int J Mol Sci 20:3888
Li X, Liu N, Sun Y, Wang P, Ge X, Pei Y, Liu D, Ma X, Li F, Yuxia Hou Y (2019c) The cotton GhWIN2 gene activates the cuticle biosynthesis pathway and influences the salicylic and jasmonic acid biosynthesis pathways. BMC Plant Biol 19:379
Liu L, Wang X, Chang C (2022) Toward a smart skin: harnessing cuticle biosynthesis for crop adaptation to drought, salinity, temperature, and ultraviolet stress. Front Plant Sci 13:961829
Lu SY, Chen CH, Wang ZC, Guo ZF, Li HH (2009) Physiological responses of somaclonal variants of triploid bermudagrass (Cynodon transvaalensis × Cynodon dactylon) to drought stress. Plant Cell Rep 28:517–526
Lv X, Li Y, Chen R, Rui M, Wang Y (2023) Stomatal responses of two drought-tolerant barley varieties with different ROS regulation strategies under drought conditions. Antioxidants 12:790
Magwanga RO, Lu P, Kirungu JN, Lu H, Wang X, Cai X, Zhou Z, Zhang Z, Salih H, Wang K, Liu F (2018) Characterization of the late embryogenesis abundant (LEA) proteins family and their role in drought stress tolerance in upland cotton. BMC Genet 19:6
Malik TA, Malik S (2006) Genetic linkage studies of drought tolerant and agronomic traits in cotton. Pak J Bot 38(5):1613–1619
Mansoor S, Khan T, Farooq I, Shah LR, Sharma V, Sonne C, Rinklebe J, Ahmad P (2022) Drought and global hunger: biotechnological interventions in sustainability and management. Planta 256:97
Medeiros CD, Falcão HM, Almeida-Cortez J, Santos DYAC, Oliveira AFM, Santos MG (2017) Leaf epicuticular wax content changes under different rainfall regimes, and its removal affects the leaf chlorophyll content and gas exchanges of Aspidosperma pyrifolium in a seasonally dry tropical forest. S Afr J Bot 111:267–274
Mofatto LS, Carneiro Fde A, Vieira NG, Duarte KE, Vidal RO, Alekcevetch JC, Cotta MG, Verdeil JL, Lapeyre-Montes F, Lartaud M, Leroy T, De Bellis F, Pot D, Rodrigues GC, Carazzolle MF, Pereira GA, Andrade AC, Marraccini P (2016) Identification of candidate genes for drought tolerance in coffee by high-throughput sequencing in the shoot apex of different Coffea Arabica cultivars. BMC Plant Biol 16:94
Moinuddin FRA, Sayre KD, Reynolds MP (2005) Osmotic adjustment in wheat in relation to grain yield under water deficit environments. Agron J 97(4):1062–1071
Monda K, Mabuchi A, Negi J, Iba K (2021) Cuticle permeability is an important parameter for the trade-off strategy between drought tolerance and CO2 uptake in land plants. Plant Signal Behav 16:e1908692
Munns R, Tester M (2008) Mechanisms of salinity tolerance. Annu Rev Plant Biol 59:651–681
Mwadzingeni L, Shimelis H, Tesfay S, Tsilo TJ (2016) Screening of bread wheat genotypes for drought tolerance using phenotypic and proline analyses. Front Plant Sci 7:1276
Niknam SR, Ma Q, Turner DW (2003) Osmotic adjustment and seed yield of Brassica napus and B. juncea genotypes in a water-limited environment in south-western Australia. Aust J Exp Agric 43(9):1127–1135
Oguz MC, Aycan M, Oguz E, Poyraz I, Yildiz M (2022) Drought stress tolerance in plants: Interplay of molecular, biochemical and physiological responses in important development stages. Physiologia 2:180–197
Oosterhuis DM (1990) Growth and development of cotton. In: Nitrogen nutrition of cotton: practical issues, pp 1–24
Ozturk M, Unal BT, García-Caparrós P, Khursheed A, Gul A, Hasanuzzaman M (2021) Osmoregulation and its actions during the drought stress in plants. Physiol Plant 172:1321–1335
Pan L, Yang Z, Wang J, Wang P, Ma X, Zhou M, Li J, Gang N, Feng G, Zhao J, Zhang X (2017) Comparative proteomic analyses reveal the proteome response to short-term drought in Italian ryegrass (Lolium multiflorum). PLoS ONE 12(9):e0184289
Panikashvili D, Shi JX, Bocobza S, Franke RB, Schreiber L, Aharoni A (2010) The Arabidopsis DSO/ABCG11 transporter affects cutin metabolism in reproductive organs and suberin in roots. Mol Plant 3:563–575
Parry MAJ, Flexas J, Medrano H (2005) Prospects for crop production under drought: Research priorities and future directions. Ann Appl Biol 147(3):211–226
Paterson AH, Brubaker CL, Wendel JF (1993) A rapid method for extraction of cotton (Gossypium spp.) genomic DNA suitable for RFLP or PCR analysis. Plant Mol Biol Rep 11(2):122–127
Peakall R, Smouse PE (2012) GenAlEx 6.5: genetic analysis in Excel. Population genetic software for teaching and research—an update. Bioinformatics 28:2537–2539
Pereira S, Figueiredo-Lima K, Oliveira AFM, Santos MG (2019) Changes in foliar epicuticular wax and photosynthesis metabolism in evergreen woody species under different soil water availability. Photosynthetica 57:192–201
Perrier X, Jacquemoud-Collet J (2006) DARwin software: dissimilarity analysis and representation for windows. http://darwin.cirad.fr. Accessed 1 Nov 2022
Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155(2):945–959
Quevedo YM, Moreno LP, Barragán E (2022) Predictive models of drought tolerance indices based on physiological, morphological and biochemical markers for the selection of cotton (Gossypium hirsutum L.) varieties. J Integr Agric 21(5):1310–1320
Sabella E, Aprile A, Negro C, Nicolì F, Nutricati E, Vergine M, Luvisi A, de Bellis L (2020) Impact of climate change on durum wheat yield. Agronomy 10:793
Saeed M, Guo W, Ullah I, Tabbasam N, Zafar Y, Rahman M, Zhang T (2011) QTL mapping for physiology, yield and plant architecture traits in cotton (Gossypium hirsutum L.) grown under well-watered versus water-stress conditions. Electron J Biotechnol 14(3):3
Saeed M, Guo W, Zhang T (2014) Association mapping for salinity tolerance in cotton (Gossypium hirsutum L.) germplasm from US and diverse regions of China. Aust J Crop Sci 8(3):338–346
Sah RP, Chakraborty M, Prasad K, Pandit M, Tudu VK, Chakravarty MK, Narayan SC, Rana M, Moharana D (2020) Impact of water deficit stress in maize: phenology and yield components. Sci Rep 10:2944
Salehi-Lisar SY, Bakhshayeshan-Agdam H (2016) Drought stress in plants: causes, consequences, and tolerance, vol 1. Springer, Berlin, pp 1–16
Saneoka H, Ogata S (1987) Relationship between water use efficiency and cuticular wax deposition in warm season forage crops grown under water deficit conditions. Soil Sci Plant Nutr 33(3):439–448
Sarabi V, Arjmand-Ghajur E (2021) Exogenous plant growth regulators/plant growth promoting bacteria roles in mitigating water-deficit stress on chicory (Cichorium pumilum Jacq.) at a physiological level. Agric Water Manag 245:106439
Schuster A, Burghardt M, Alfarhan A, Bueno A, Hedrich R, Leide J, Thomas J, Riederer M (2016) Effectiveness of cuticular transpiration barriers in a desert plant at controlling water loss at high temperatures. AoB Plants 8:plw027
Seleiman MF, Al-Suhaibani N, Ali N, Akmal M, Alotaibi M, Refay Y, Dindaroglu T, Abdul-Wajid HH, Battaglia ML (2021) Drought stress impacts on plants and different approaches to alleviate its adverse effects. Plants 10(2):259
Seo PJ, Lee SB, Suh MC, Park M-J, Go YS, Park C-M (2011) The MYB96 transcription factor regulates cuticular wax biosynthesis under drought conditions in Arabidopsis. Plant Cell 23:1138–1152
Sharma SS, Dietz KJ (2009) The relationship between metal toxicity and cellular redox imbalance. Trends Plant Sci 14:43–50
Shiraku ML, Magwanga RO, Zhang Y, Hou Y, Kirungu JN, Mehari TG, Xu Y, Wang Y, Wang K, Cai X, Zhou Z, Liu F (2022) Late embryogenesis abundant gene LEA3 (Gh_A08G0694) enhances drought and salt stress tolerance in cotton. Int J Biol Macromol 207:700–714
Sultana R, Choudhary AK, Pal AK, Saxena KB, Prasad BD, Singh RG (2014) Abiotic stresses in major pulses: current status and strategies. In: Gaur RK, Sharma P (eds) Approaches to plant stress and their management. Springer, New Delhi, pp 173–190
Sun T, Rao S, Zhou X, Li L (2022) Plant carotenoids: recent advances and future perspectives. Mol Hortic 2:3
Szabados L, Savoure A (2010) Proline: a multifunctional amino acid. Trends Plant Sci 15:89–97
Tamirat W (2019) Review on role of proline on coffee under drought conditions. J Environ Earth Sci 9:10
Ullah A, Sun H, Yang X, Zhang X (2017) Drought coping strategies in cotton: increased crop per drop. Plant Biotechnol J 15:271–284
Verbruggen N, Hermans C (2008) Proline accumulation in plants: a review. Amino Acids 35:753–759
Verslues PE, Sharma S (2010) Proline metabolism and its implications for plant-environment interaction. Arabidopsis Book 8:e0140
Verslues PE, Agarwal M, Katiyar-Agarwal S, Zhu JH, Zhu JK (2006) Methods and concepts in quantifying resistance to drought, salt and freezing, abiotic stresses that affect plant water status. Plant J 45:523–539
Vieira EA, Silva MDG, Gomes ADS, Urakawa AH, Barros AL (2021) Carbon-nitrogen metabolism and oxidative stress in young plants of Dipteryx alata Vog. subjected to seasonal water regimes in the Cerrado. Environ Exp Bot 183:104361
Wang Z-Y, Xiong L, Li W, Zhu J-K, Zhu J (2011) The plant cuticle is required for osmotic stress regulation of abscisic acid biosynthesis and osmotic stress tolerance in Arabidopsis. Plant Cell 23:1971–1984
Wang Z, Li G, Sun H, Ma L, Guo Y, Zhao Z, Gao H, Mei L (2018) Effects of drought stress on photosynthesis and photosynthetic electron transport chain in young apple tree leaves. Biol Open 7:bio035279
Wang Y, Jin S, Xu Y, Li S, Zhang S, Yuan Z, Li J, Ni Y (2020) Overexpression of BnKCS1-1, BnKCS1-2, and BnCER1-2 promotes cuticular wax production and increases drought tolerance in Brassica napus. Crop J 8:26–37
Wang Z, Yang Y, Yadav V, Zhao W, He Y, Zhang X, Wei C (2022) Drought-induced proline is mainly synthesized in leaves and transported to roots in watermelon under water deficit. Hortic Plant J 8(5):615–626
Xiong Y, Xiong Y, Shu X, Yu Q, Lei X, Li D, Yan J, Bai S, Ma X (2022) Molecular phylogeography and intraspecific divergences in Siberian wildrye (Elymus sibiricus L.) wild populations in China, inferred from chloroplast DNA sequence and cpSSR markers. Front Plant Sci 13:862759
Xu P, Chukhutsina VU, Nawrocki WJ, Schansker G, Bielczynski LW, Lu Y, Karcher D, Bock R, Croce R (2020) Photosynthesis without beta-carotene. Elife 9:e58984
Xue D, Zhang X, Lu X, Chen G, Chen Z-H (2017) Molecular and evolutionary mechanisms of cuticular wax for plant drought tolerance. Front Plant Sci 8:621
Yancey PH (2005) Organic osmolytes as compatible, metabolic and counteracting cytoprotectants in high osmolarity and other stresses. J Exp Biol 208:2819–2830
Yang F, Han Y, Zhu Q-H, Zhang X, Xue F, Li Y, Luo H, Qin J, Sun J, Liu F (2022) Impact of water deficiency on leaf cuticle lipids and gene expression networks in cotton (Gossypium hirsutum L.). BMC Plant Biol 22:404
Yeats TH, Rose JKC (2013) The formation and function of plant cuticles. Plant Physiol 163:5–20
Zahid Z, Khan MKR, Hameed A, Akhtar M, Ditta A, Hassan HM, Farid G (2021) Dissection of drought tolerance in Upland cotton through morpho-physiological and biochemical traits at seedling stage. Front Plant Sci 12:627107
Zeisler V, Schreiber L (2016) Epicuticular wax on cherry laurel (Prunus laurocerasus) leaves does not constitute the cuticular transpiration barrier. Planta 243:65–81
Zhang Q, Zhang X, Yang Y, Xu L, Feng J, Wang J, Tang Y, Pei X, Zhao X (2022) Genetic diversity of Juglans mandshurica populations in Northeast China based on SSR markers. Front Plant Sci 13:931578
Zhao B, Liu Z, Ata-Ul-Karim ST, Xiao J, Liu Z, Qi A, Duan A (2016) Rapid and nondestructive estimation of the nitrogen nutrition index in winter barley using chlorophyll measurements. Field Crops Res 185:59–68
Zheng Z-L (2009) Carbon and nitrogen nutrient balance signaling in plants. Plant Signal Behav 4:584–591
Zhou X, Li L, Xiang J, Gao G, Xu F, Liu A, Zhang X, Peng Y, Chen X, Wan X (2015) OsGL1-3 is involved in cuticular wax biosynthesis and tolerance to water deficit in rice. PLoS ONE 10:e116676