Characterization of the metallo-dependent amidohydrolases responsible for “auxiliary” leucinyl removal in the biosynthesis of 2,2′-bipyridine antibiotics
Tài liệu tham khảo
Walsh, 2010, Natural products version 2.0: connecting genes to molecules, J Am Chem Soc, 132, 2469, 10.1021/ja909118a
Meier, 2009, The chemical biology of modular biosynthetic enzymes, Chem Soc Rev, 38, 2012, 10.1039/b805115c
Kaes, 2000, Bipyridine: the most widely used ligand. A review of molecules comprising at least two 2, 2'-bipyridine units, Chem Rev, 100, 3553, 10.1021/cr990376z
Hapke, 2008, Versatile tools in the construction of substituted 2,2 '-bipyridines-cross-coupling reactions with tin, zinc and boron compounds, ChSRv, 37, 2782
Divekar, 1967, Caerulomycin, a new antibiotic from Streptomyces caeruleus Baldacci. II. Structure, Can J Chem, 45, 1215, 10.1139/v67-201
Mcinnes, 1977, Caerulomycins-B and Caerulomycin-C, new 2,2'-dipyridyl derivatives from streptomyces-caeruleus, Can J Chem, 55, 4159, 10.1139/v77-589
Fu, 2011, Cyclic bipyridine glycosides from the marine-derived actinomycete Actinoalloteichus cyanogriseus WH1-2216-6, Org Lett, 13, 5948, 10.1021/ol202245s
Shindo, 1994, Collismycins A and B, novel non-steroidal inhibitors of denamethasone-glucocorticoid receptor binding, J Antibiot, 47, 1072, 10.7164/antibiotics.47.1072
Antkowiak, 1979, The structures of orellanine and orelline, Tetrahedron Lett, 20, 1931, 10.1016/S0040-4039(01)86882-9
Wall, 1966, Plant antitumor agents. I. The isolation and structure of camptothecin, a novel alkaloidal leukemia and tumor inhibitor from camptotheca acuminata1, 2, J Am Chem Soc, 88, 3888, 10.1021/ja00968a057
Rao, 1963, The structure of streptonigrin, J Am Chem Soc, 85, 2532, 10.1021/ja00899a051
Fu, 2011, Cytotoxic bipyridines from the marine-derived actinomycete Actinoalloteichus cyanogriseus WH1-2216-6, J Nat Prod, 74, 1751, 10.1021/np200258h
Bu, 2014, Anti-mycobacterial nucleoside antibiotics from a marine-derived Streptomyces sp. TPU1236A, Mar Drugs, 12, 6102, 10.3390/md12126102
Funk, 1959, Caerulomycin, a new antibiotic from streptomyces caeruleus baldscci: I. Production, isolation, assay, and biological properties, Can J Microbiol, 5, 317, 10.1139/m59-039
Gomi, 1994, Novel antibiotics SF2738A, B and C, and their analogs produced by Streptomyces sp, J Antibiot, 47, 1385, 10.7164/antibiotics.47.1385
Stadler, 2001, Antifungal actinomycete metabolites discovered in a differential cell-based screening using a recombinant TOPO1 deletion mutant strain, Arch Pharm, 334, 143, 10.1002/1521-4184(200105)334:5<143::AID-ARDP143>3.0.CO;2-B
Kim, 2011, Coprismycins A and B, neuroprotective phenylpyridines from the dung beetle-associated bacterium, Streptomyces sp, Bioorg Med Chem Lett, 21, 5715, 10.1016/j.bmcl.2011.08.023
Garcia, 2013, Engineering the biosynthesis of the polyketide-nonribosomal peptide collismycin A for generation of analogs with neuroprotective activity, Chem Biol, 20, 1022, 10.1016/j.chembiol.2013.06.014
Singla, 2012
Gurram, 2014, Caerulomycin A enhances transforming growth factor-beta (TGF-beta)-Smad3 protein signaling by suppressing interferon-gamma (IFN-gamma)-signal transducer and activator of transcription 1 (STAT1) protein signaling to expand regulatory T cells (Tregs), J Biol Chem, 289, 17515, 10.1074/jbc.M113.545871
Singla, 2014, Caerulomycin A suppresses immunity by inhibiting T cell activity, PLoS One, 9, 10.1371/journal.pone.0107051
Singla, 2014, Cerulomycin Caerulomycin [corrected] A: a potent novel immunosuppressive agent, Transplantation, 97, e57, 10.1097/TP.0000000000000119
Gil, 2011
Garcia, 2012, Elucidating the biosynthetic pathway for the polyketide-nonribosomal peptide collismycin A: mechanism for formation of the 2,2'-bipyridyl ring, Chem Biol, 19, 399, 10.1016/j.chembiol.2012.01.014
Qu, 2012, Caerulomycins and collismycins share a common paradigm for 2,2'-bipyridine biosynthesis via an unusual hybrid polyketide-peptide assembly logic, J Am Chem Soc, 134, 9038, 10.1021/ja3016457
Zhu, 2012, Identification of caerulomycin A gene cluster implicates a tailoring amidohydrolase, Org Lett, 14, 2666, 10.1021/ol300589r
Chen, 2016, Biosynthesis and molecular engineering of templated natural products, Natl Sci Rev, 10.1093/nsr/nww045
Zhu, 2016, Biochemical and structural insights into the aminotransferase CrmG in caerulomycin biosynthesis, ACS Chem Biol, 11, 943, 10.1021/acschembio.5b00984
Zhu, 2013, Insights into caerulomycin A biosynthesis: a two-component monooxygenase CrmH-catalyzed oxime formation, J Am Chem Soc, 135, 18750, 10.1021/ja410513g
Fu, 2014, Acyclic congeners from Actinoalloteichus cyanogriseus provide insights into cyclic bipyridine glycoside formation, Org Lett, 16, 4264, 10.1021/ol5019757
Joseph, 2001
Kieser, 2000
Lopez-Ogalla, 2013, Process development of a potent neuroprotector agent: collismycin a, Org Process Res Dev, 17, 120, 10.1021/op3003129
Holm, 1997, An evolutionary treasure: unification of a broad set of amidohydrolases related to urease, Proteins, 28, 72, 10.1002/(SICI)1097-0134(199705)28:1<72::AID-PROT7>3.0.CO;2-L
Seibert, 2005, Structural and catalytic diversity within the amidohydrolase superfamily, Biochemistry, 44, 6383, 10.1021/bi047326v
Dobritzsch, 2014, Structural and functional characterization of ochratoxinase, a novel mycotoxin-degrading enzyme, Biochem J, 462, 441, 10.1042/BJ20140382
Xiang, 2010, Functional identification and structure determination of two novel prolidases from cog1228 in the amidohydrolase superfamily, Biochemistry, 49, 6791, 10.1021/bi100897u
Xiang, 2009, Functional identification of incorrectly annotated prolidases from the amidohydrolase superfamily of enzymes, Biochemistry, 48, 3730, 10.1021/bi900111q
Nishihara, 1998, Chaperone coexpression plasmids: differential and synergistic roles of DnaK-DnaJ-GrpE and GroEL-GroES in assisting folding of an allergen of Japanese cedar pollen, Cryj2, in Escherichia coli, Appl Environ Microbiol, 64, 1694, 10.1128/AEM.64.5.1694-1699.1998
Abrunhosa, 2007, Isolation and purification of an enzyme hydrolyzing ochratoxin A from Aspergillus Niger, Biotechnol Lett, 29, 1909, 10.1007/s10529-007-9479-2
Walsh, 2008, The chemical versatility of natural-product assembly lines, Acc Chem Res, 41, 4, 10.1021/ar7000414
Pang, 2016, Cyclization of polyketides and non-ribosomal peptides on and off their assembly lines, Nat Prod Pep, 33, 162, 10.1039/C5NP00095E