Characterization of the Gut Microbiome Using 16S or Shotgun Metagenomics
Tóm tắt
Từ khóa
Tài liệu tham khảo
Abubucker, 2012, Metabolic reconstruction for metagenomic data and its application to the human microbiome, PLoS Comput. Biol., 8, 10.1371/journal.pcbi.1002358
Aho, 1973, On finding lowest common ancestors in trees,, Proc. 5th ACM Symp. Theory of Computing (STOC), 253
Antharam, 2013, Intestinal dysbiosis and depletion of butyrogenic bacteria in Clostridium difficile infection and nosocomial diarrhea, J. Clin. Microbiol., 51, 2884, 10.1128/JCM.00845-13
Aronesty, 2011, Expression Analysis., Command-Line Tools for Processing Biological Sequencing Data ea-utils
Arslan, 2014, Obesity, fatty liver disease and intestinal microbiota, World J. Gastroenterol., 20, 16452, 10.3748/wjg.v20.i44.16452
Bajaj, 2015, Salivary microbiota reflects changes in gut microbiota in cirrhosis with hepatic encephalopathy, Hepatology, 62, 1260, 10.1002/hep.27819
Barlow, 2015, Role of the gut microbiome in obesity and diabetes mellitus, Nutr. Clin. Pract., 30, 787, 10.1177/0884533615609896
Beals, 1984, Bray-Curtis ordination: an effective strategy for analysis of multivariate ecological data, Adv. Ecol. Res., 14, 1, 10.1016/S0065-2504(08)60168-3
Bhattacharjee, 2013, Alzheimer's disease and the microbiome, Front. Cell. Neurosci., 7, 10.3389/fncel.2013.00153
Boisvert, 2012, Ray Meta: scalable de novo metagenome assembly and profiling, Genome Biol., 13, 10.1186/gb-2012-13-12-r122
Bolhuis, 2014, Molecular ecology of microbial mats, FEMS Microbiol. Ecol., 90, 335, 10.1111/1574-6941.12408
Brady, 2011, PhymmBL expanded: confidence scores, custom databases, parallelization and more, Nat. Methods, 8, 10.1038/nmeth0511-367
Brady, 2009, Phymm and PhymmBL: metagenomic phylogenetic classification with interpolated Markov models, Nat. Methods, 6, 673, 10.1038/nmeth.1358
Bray, 1957, An ordination of upland forest communities of southern Wisconsin, Ecol. Monogr., 27, 325, 10.2307/1942268
Brestoff, 2013, Commensal bacteria at the interface of host metabolism and the immune system, Nat. Immunol., 4, 676, 10.1038/ni.2640
Broderick, 2015, A common origin for immunity and digestion, Front. Immunol., 6, 10.3389/fmicb.2015.00531
Buttigieg, 2014, A guide to statistical analysis in microbial ecology: a community-focused, living review of multivariate data analyses, FEMS Microbiol. Ecol., 90, 543, 10.1111/1574-6941.12437
Caporaso, 2010, QIIME allows analysis of high-throughput community sequencing data, Nat. Methods, 7, 335, 10.1038/nmeth.f.303
Caporaso, 2011, Global patterns of 16S rRNA diversity at a depth of millions of sequences per sample, Proc. Natl. Acad. Sci. U.S.A., 108, 4516, 10.1073/pnas.1000080107
Chakravorty, 2007, A detailed analysis of 16S ribosomal RNA gene segments for the diagnosis of pathogenic bacteria, J. Microbiol. Methods, 69, 330, 10.1016/j.mimet.2007.02.005
Chang, 2008, Decreased diversity of the fecal Microbiome in recurrent Clostridium difficile-associated diarrhea, J. Infect. Dis., 197, 435, 10.1086/525047
Chen, 2013, A comparison of methods for clustering 16S rRNA sequences into OTUs, PLoS ONE, 8, 10.1371/journal.pone.0070837
C. Human Microbiome Project, 2012a, A framework for human microbiome research, Nature, 486, 215, 10.1038/nature11209
C. Human Microbiome Project, 2012b, Structure, function and diversity of the healthy human microbiome, Nature, 486, 207, 10.1038/nature11234
Cole, 2014, Ribosomal Database Project: data and tools for high throughput rRNA analysis, Nucleic Acids Res., 42, D633, 10.1093/nar/gkt1244
Darling, 2014, PhyloSift: phylogenetic analysis of genomes and metagenomes, Peer J., 2, 10.7717/peerj.243
Dash, 2015, The gut microbiome and diet in psychiatry: focus on depression, Curr. Opin. Psychiatry, 28, 1, 10.1097/YCO.0000000000000117
DeSantis, 2006, Greengenes, a chimera-checked 16S rRNA gene database and workbench compatible with ARApplied, B., and environmental, Microbiology, 72, 5069, 10.1128/AEM.03006-05
Dillies, 2013, A comprehensive evaluation of normalization methods for Illumina high-throughput RNA sequencing data analysis, Brief Bioinformat., 14, 671, 10.1093/bib/bbs046
Dinan, 2014, Genomics of schizophrenia: time to consider the gut microbiome?, Mol. Psychiatry, 19, 1252, 10.1038/mp.2014.93
Edgar, 2010, Search and clustering orders of magnitude faster than BLAST, Bioinformatics, 26, 2460, 10.1093/bioinformatics/btq461
Edgar, 2013, UPARSE: highly accurate OTU sequences from microbial amplicon reads, Nat. Methods, 10, 996, 10.1038/nmeth.2604
Eren, 2013, Oligotyping: differentiating between closely related microbial taxa using 16S rRNA gene data, Methods Ecol. Evol., 4, 1111, 10.1111/2041-210X.12114
Eren, 2014, Minimum entropy decomposition: unsupervised oligotyping for sensitive partitioning of high-throughput marker gene sequences, ISME J., 9, 968, 10.1038/ismej.2014.195
Faith, 2013, The long-term stability of the human gut microbiota, Science, 341, 10.1126/science.1237439
Flint, 2012, The role of the gut microbiota in nutrition and health, Nat. Rev. Gastroenterol. Hepatol., 9, 577, 10.1038/nrgastro.2012.156
Forster, 2016, HPMCD: the database of human microbial communities from metagenomic datasets and microbial reference genomes, Nucleic Acids Res., 44, D604, 10.1093/nar/gkv1216
Franzosa, 2015, Sequencing and beyond: integrating molecular ‘omics’ for microbial community profiling, Nat. Rev. Microbiol., 13, 360, 10.1038/nrmicro3451
Franzosa, 2014, Relating the metatranscriptome and metagenome of the human gut, Proc. Natl. Acad. Sci. U.S.A., 111, E2329, 10.1073/pnas.1319284111
Garrett, 2010, Homeostasis and inflammation in the intestine, Cell, 140, 859, 10.1053/j.gastro.2011.02.047
Gevers, 2012, Bioinformatics for the Human Microbiome Project, PLoS Comput. Biol., 8, 10.1371/journal.pcbi.1002779
Greenblum, 2012, Metagenomics systems biology of the human gut microbiome reveals topological shifts associated with obesity and inflammatory bowel disease, Proc. Natl. Acad. Sci. U.S.A., 109, 594, 10.1073/pnas.1116053109
Hartstra, 2015, Insights into the role of the microbiome in obesity and type 2 diabetes, Diabetes Care, 38, 159, 10.2337/dc14-0769
Heinken, 2015, Systems biology of host-microbe metabolomics. Wiley interdisciplinary reviews, Syst. Biol. Med., 195
Huson, 2011, Integrative analysis of environmental sequences using MEGAN4, Genome Res., 21, 1552, 10.1101/gr.120618.111
Huttenhower, 2014a, Advancing the microbiome research community, Cell, 159, 227, 10.1016/j.cell.2014.09.022
Huttenhower, 2014b, Inflammatory bowel disease as a model for translating the microbiome, Immunity, 40, 843, 10.1016/j.immuni.2014.05.013
Janda, 2007, 16S rRNA gene sequencing for bacterial identification in the diagnostic laboratory: pluses, perils, and pitfalls, J. Clin. Microbiol., 45, 2761, 10.1128/JCM.01228-07
Joice, 2014, Determining microbial products and identifying molecular targets in the human microbiome, Cell Metab., 20, 731, 10.1016/j.cmet.2014.10.003
Joshi, 2011, Sickle: A Sliding-Window, Adaptive, Quality-Based Trimming Tool for FastQ files. [Software] Version 1.33
Kaminski, 2015, High-specificity targeted functional profiling in microbial communities with ShortBRED, PLoS Comput. Biol., 11, 10.1371/journal.pcbi.1004557
Kanehisa, 2004, Data, information, knowledge and principle: back to metabolism in KEGG, Nucleic Acids Res., 42, D199, 10.1093/nar/gkt1076
Kielbasa, 2011, Adaptive seeds tame genomic sequence comparison, Genome Res., 21, 487, 10.1101/gr.113985.110
Knight, 2012, Unlocking the potential of metagenomics through replicated experimental design, Nat. Biotechnol., 30, 513, 10.1038/nbt.2235
Knights, 2013, Advances in inflammatory bowel disease pathogenesis: linking host genetics and the microbiome, Gut, 62, 1505, 10.1136/gutjnl-2012-303954
Kostic, 2014, The microbiome in inflammatory bowel disease: current status and the future ahead, Gastroenterology, 146, 1489, 10.1053/j.gastro.2014.02.009
Kristiansson, 2009, ShotgunFunctionalizeR: an R-package for functional comparison of metagenomes, Bioinformatics, 25, 2737, 10.1093/bioinformatics/btp508
Kuczynski, 2010, Microbial community resemblance methods differ in their ability to detect biologically relevant patterns, Nat. Methods, 7, 813, 10.1038/nmeth.1499
Kultima, 2012, MOCAT: a metagenomics assembly and gene prediction toolkit, PLoS ONE, 7, 10.1371/journal.pone.0047656
Langille, 2013, Predictive functional profiling of microbial communities using 16S rRNA marker gene sequences, Nat. Biotechnol., 31, 814, 10.1038/nbt.2676
Laurence, 2014, Common contaminants in Next-Generation Sequencing that hinder discovery of low-abundance microbes, PLoS ONE, 9, 10.1371/journal.pone.0097876
Leprieur, 2012, Quantifying phylogenetic beta diversity: distinguishing between ‘true’ turnover of lineages and phylogenetic diversity gradients, PLoS ONE, 7, 10.1371/journal.pone.0042760
Levy, 2014, Metagenomic systems biology and metabolic modeling of the human microbiome: from species composition to community assembly rules, Gut Microbes, 5, 265, 10.4161/gmic.28261
Ley, 2006, Ecological and evolutionary forces shaping microbial diversity in the human intestine, Cell, 124, 837, 10.1016/j.cell.2006.02.017
Liu, 2008, Accurate taxonomy assignments from 16S rRNA sequences produced by highly parallel pyrosequencers, Nucleic Acids Res., 36, 10.1093/nar/gkn491
Lozupone, 2008, Species divergence and the measurement of microbial diversity, FEMS Microbiol. Rev., 32, 557, 10.1111/j.1574-6976.2008.00111.x
Lozupone, 2013, Meta-analyses of studies of the human microbiota, Genome Res., 23, 1704, 10.1101/gr.151803.112
Lozupone, 2006, UniFrac–an online tool for comparing microbial community diversity in a phylogenetic context, BMC Bioinformatics, 7, 10.1186/1471-2105-7-371
Lozupone, 2005, UniFrac: a new phylogenetic method for comparing microbial communities, Appl. Environ. Microbiol., 71, 8228, 10.1128/AEM.71.12.8228-8235.2005
Mardis, 2008, Next-generation DNA sequencing methods, Annu. Rev. Genomics Hum. Genet., 9, 387, 10.1146/annurev.genom.9.081307.164359
Markowitz, 2008, IMG/M: a data management and analysis system for metagenomes, Nucleic Acids Res., 36, D534, 10.1093/nar/gkm869
Martin, Cutadapt removes adapter sequences from high-throughput sequencing reads, EMBnet J., 17, 10.14806/ej.17.1.200
Martín, 2014, The role of metagenomics in understanding the human microbiome in health and disease, Virulence, 5, 413, 10.4161/viru.27864
Martínez, 2009, Diet-induced metabolic improvements in a hamster model of hypercholesterolemia are strongly linked to alterations of the gut microbiota, Appl. Environ. Microbiol., 75, 4175, 10.1128/AEM.00380-09
Mende, 2013, Accurate and universal delineation of prokaryotic species, Nat. Methods, 10, 881, 10.1038/nmeth.2575
Meyer, 2008, The metagenomics RAST server - a public resource for the automatic phylogenetic and functional analysis of metagenomes, BMC Bioinformatics, 9, 10.1186/1471-2105-9-386
Mikheenko, 2015, MetaQUAST: evaluation of metagenome assemblies, Bioinformatics, 32, 1088, 10.1093/bioinformatics/btv697
Mitra, 2011, Functional analysis of metagenomes and metatranscriptomes using SEED and KEGG, BMC Bioinformatics, 12, 10.1186/1471-2105-12-S1-S21
Monte, 1964, A table for calculating the equitability component of species diversity, J. Anim. Ecol., 33, 217, 10.2307/2628
Morgan, 2014, Meta'omic analytic techniques for studying the intestinal microbiome, Gastroenterology, 146, 1437, 10.1053/j.gastro.2014.01.049
Namiki, 2012, MetaVelvet: an extension of Velvet assembler to de novo metagenome assembly from short sequence reads, Nucleic Acids Res., 40, 10.1093/nar/gks678
Navas-Molina, 2013, Advancing our understanding of the human microbiome using QIIME, Meth. Enzymol., 531, 371, 10.1016/B978-0-12-407863-5.00019-8
Ni, 2013, How much metagenomic sequencing is enough to achieve a given goal?, Sci. Rep., 3, 1, 10.1038/srep01968
Nicholson, 2012, Host-gut microbiota metabolic interactions, Science, 336, 1262, 10.1126/science.1223813
Nielsen, 2014, Kefir: a multifaceted fermented dairy product, Probiot. Antimicrob. Proteins, 6, 123, 10.1007/s12602-014-9168-0
Norman, 2015, Disease-specific alterations in the enteric virome in inflammatory bowel disease, Cell, 160, 447, 10.1016/j.cell.2015.01.002
Norman, 2014, Kingdom-agnostic metagenomics and the importance of complete characterization of enteric microbial communities, Gastroenterology, 146, 1459, 10.1053/j.gastro.2014.02.001
Novais, 2011, The evolution of Pyrosequencing(R) for microbiology: from genes to genomes, J. Microbiol. Methods, 86, 1, 10.1016/j.mimet.2011.04.006
Oksanen, 2015, Vegan Community Ecology Package
Ounit, 2015, CLARK: fast and accurate classification of metagenomic and genomic sequences using discriminative k-mers, BMC Genomics, 16, 10.1186/s12864-015-1419-2
Overbeek, 2005, The subsystems approach to genome annotation and its use in the project to annotate 1000 genomes, Nucleic Acids Res., 33, 5691, 10.1093/nar/gki866
Paulson, 2013, Differential abundance analysis for microbial marker-gene surveys, Nat. Methods, 10, 1200, 10.1038/nmeth.2658
Qichao, 2014, Strain/species identification in metagenomes using genome-specific markers, Nucleic Acids Res., 42, 10.1093/nar/gku138
Qin, 2010, A human gut microbial gene catalogue established by metagenomic sequencing, Nature, 464, 59, 10.1038/nature08821
Qin, 2012, A metagenome-wide association study of gut microbiota in type 2 diabetes, Nature, 490, 55, 10.1038/nature11450
Quast, 2013, The SILVA ribosomal RNA gene database project: improved data processing and web-based tools, Nucleic Acids Res., 41, D590, 10.1093/nar/gks1219
Ramette, 2007, Multivariate analyses in microbial ecology, FEMS Microbiol. Ecol., 62, 142, 10.1111/j.1574-6941.2007.00375.x
Reyes, 2010, Viruses in the faecal microbiota of monozygotic twins and their mothers, Nature, 466, 334, 10.1038/nature09199
Riesenfeld, 2004, Metagenomics: genomic analysis of microbial communities, Annu. Rev. Genet., 38, 525, 10.1146/annurev.genet.38.072902.091216
Rinke, 2013, Insights into the phylogeny and coding potential of microbial dark matter, Nature, 499, 431, 10.1038/nature12352
Ritari, 2015, Improved taxonomic assignment of human intestinal 16S rRNA sequences by a dedicated reference database, BMC Genomics, 16, 10.1186/s12864-015-2265-y
Rokach, 2005, Clustering Methods. Data Mining and Knowledge Discovery Handbook.
Salter, 2014, Reagent and laboratory contamination can critically impact sequence-based microbiome analyses, BMC Biol., 12, 10.1186/s12915-014-0087-z
Schaeffer, 2015, Pseudoalignment for metagenomic read assignment
Schaubeck, 2015, Dysbiotic gut microbiota causes transmissible Crohn's disease-like ileitis independent of failure in antimicrobial defence, Gut, 65, 225, 10.1136/gutjnl-2015-309333
Schloss, 2008, A statistical toolbox for metagenomics: assessing functional diversity in microbial communities, BMC Bioinformatics, 9, 10.1186/1471-2105-9-34
Schloss, 2011, Assessing and improving methods used in operational taxonomic unit-based approaches for 16S rRNA gene sequence analysis, Appl. Environ. Microbiol., 10, 3219, 10.1128/AEM.02810-10
Schloss, 2009, Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities, Appl. Environ. Microbiol., 75, 7537, 10.1128/AEM.01541-09
Segata, 2013, Computational meta'omics for microbial community studies, Mol. Syst. Biol., 9, 10.1038/msb.2013.22
Segata, 2012, Metagenomic microbial community profiling using unique clade-specific marker genes, Nat. Methods, 9, 811, 10.1038/nmeth.2066
Shannon, 1948, A mathematical theory of communication, Bell Syst. Techn. J., 27, 379, 10.1002/j.1538-7305.1948.tb01338.x
Soergel, 2012, Selection of primers for optimal taxonomic classification of environmental 16S rRNA gene sequences, ISME J., 6, 1440, 10.1038/ismej.2011.208
Stackebrandt, 2006, Molecular taxonomic parameters: tarnished gold standards, Microbiol. Today, 33, 152, 10.1038/msb.2013.22
Strong, 2014, Microbial contamination in next generation sequencing: implications for sequence-based analysis of clinical samples, PLoS Pathog., 10, 10.1371/journal.ppat.1004437
Sun, 2012, A large-scale benchmark study of existing algorithms for taxonomy-independent microbial community analysis, Brief. Bioinformatics, 13, 107, 10.1093/bib/bbr009
Tikhonov, 2015, Interpreting 16S metagenomic data without clustering to achieve sub-OTU resolution, ISME J., 9, 68, 10.1038/ismej.2014.117
Treangen, 2013, MetAMOS: a modular and open source metagenomic assembly and analysis pipeline, Genome Biol., 14, 10.1186/gb-2013-14-1-r2
Tuomisto, 2010, A diversity of beta diversities: straightening up a concept gone awry. Part 1. Defining beta diversity as a function of alpha and gamma diversity, Ecography, 33, 2, 10.1111/j.1600-0587.2009.05880.x
Turnbaugh, 2009, The core gut microbiome, energy balance and obesity, J. Physiol., 587, 4153, 10.1113/jphysiol.2009.174136
Turnbaugh, 2009, A core gut microbiome in obese and lean twins, Nature, 457, 480, 10.1038/nature07540
Vetrovský, 2013, The variability of the 16S rRNA gene in bacterial genomes and its consequences for bacterial community analyses, PLoS ONE, 8, 10.1371/journal.pone.0057923
Vincent, 2013, Reductions in intestinal Clostridiales precede the development of nosocomial Clostridium difficile infection, Microbiome, 1, 10.1186/2049-2618-1-18
Vital, 2014, Revealing the bacterial butyrate synthesis pathways by analyzing (meta)genomic data, MBio, 5, 10.1128/mBio.00889-14
Wang, 2013, Phylogenetic beta diversity in bacterial assemblages across ecosystems: deterministic versus stochastic processes, ISME J., 7, 1310, 10.1038/ismej.2013.30
Wang, 2007, Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy, Appl. Environ. Microbiol., 73, 5261, 10.1128/AEM.00062-07
Wang, 2015, Metagenomic analysis of microbiome in colon tissue from subjects with inflammatory bowel diseases reveals interplay of viruses and bacteria, Inflamm. Bowel Dis., 21, 1419, 10.1097/MIB.0000000000000344
Weiss, 2014, Tracking down the sources of experimental contamination in microbiome studies, Genome Biol., 15, 10.1186/s13059-014-0564-2
Wood, 2014, Kraken: ultrafast metagenomic sequence classification using exact alignments, Genome Biol., 15, 10.1186/gb-2014-15-3-r46
Wu, 2008, A simple, fast, and accurate method of phylogenomic inference, Genome Biol., 9, 10.1186/gb-2008-9-10-r151
Yen, 2015, Metabolomic analysis of human fecal microbiota: a comparison of feces-derived communities and defined mixed communities, J. Proteome Res., 14, 1472, 10.1021/pr5011247
Yoon, 2015, Functional genomic and metagenomic approaches to understanding gut microbiota-animal mutualism, Curr. Opin. Microbiol., 24C, 38, 10.1016/j.mib.2015.01.007
Zhu, 2015, Inter-individual differences in the gene content of human gut bacterial species, Genome Biol., 16, 10.1186/s13059-015-0646-9