Characterization of selected parameters of Chlorella vulgaris microalgae after short-term exposure to gold nanoparticles with different surface properties

Journal of Environmental Chemical Engineering - Tập 10 - Trang 108248 - 2022
Monika Kula-Maximenko1, Anna Gorczyca2, Ewa Pociecha3, Agata Gąstoł3, Julia Maciejewska-Prończuk4, Magdalena Oćwieja5
1Franciszek Górski Institute of Plant Physiology Polish Academy of Sciences, Niezapominajek 21, PL-30239 Krakow, Poland
2Department of Microbiology and Biomonitoring, University of Agriculture in Krakow, Mickiewicz Ave. 21, PL-31120 Krakow, Poland
3Department of Plant Breeding, Physiology and Seed Science, University of Agriculture in Krakow, Podłużna 3, PL-30239 Krakow, Poland
4Department of Chemical and Process Engineering, Cracow University of Technology, Warszawska 24, PL-31155 Krakow, Poland
5Jerzy Haber Institute of Catalysis and Surface Chemist ry Polish Academy of Sciences, Niezapominajek 8, PL-30239 Krakow, Poland

Tài liệu tham khảo

Pereira, 2020, Extraction, properties, and applications of bioactive compounds obtained from microalgae, Curr. Pharm. Des., 26, 1929, 10.2174/1381612826666200403172206 Pereira, 2021, Macroalgae, Encyclopedia, 1, 177, 10.3390/encyclopedia1010017 Naselli-Flores, 2022, Ecosystem services provided by marine and freshwater phytoplankton, Hydrobiologia, 1 Adarme-Vega, 2012, Microalgal biofactories: a promising approach towards sustainable omega-3 fatty acid production, Microb. Cell Factor., 11, 96, 10.1186/1475-2859-11-96 Klassen, 2017, Highly efficient methane generation from untreated microalgae biomass, Biotechnol. Biofuels, 10, 186, 10.1186/s13068-017-0871-4 Murata, 2021, What do patents tell us about microalgae in agriculture?, AMB Express, 11, 154, 10.1186/s13568-021-01315-4 Scranton, 2015, Chlamydomonas as a model for biofuels and bioproducts production, Plant J., 82, 523, 10.1111/tpj.12780 Sun, 2018, High-value biomass from microalgae production platforms: strategies and progress based on carbon metabolism and energy conversion, Biotechnol. Biofuels, 11, 227, 10.1186/s13068-018-1225-6 Suthar, 2018, Production of Chlorella vulgaris under varying nutrient and abiotic conditions: a potential microalga for bioenergy feedstock, Process Saf. Environ. Prot., 113, 141, 10.1016/j.psep.2017.09.018 Verma, 2022, Phycoremediation of milk processing wastewater and lipid-rich biomass production using Chlorella vulgaris under continuous batch system, Sci. Total Environ., 833, 10.1016/j.scitotenv.2022.155110 Adamczyk, 2016, CO2 biofixation and growth kinetics of Chlorella vulgaris and Nannochloropsis gaditana, Biotechnol. Appl. Biochem., 179, 1248, 10.1007/s12010-016-2062-3 Morales, 2018, The impact of environmental factors on carbon dioxide fixation by microalgae, FEMS Microbiol. Lett., 365, 10.1093/femsle/fnx262 Raja, 2008, A perspective on the biotechnological potential of microalgae, Crit. Rev. Microbiol., 34, 77, 10.1080/10408410802086783 Smith, 2018, The influence of exogenous organic carbon assimilation and photoperiod on the carbon and lipid metabolism of Chlamydomonas reinhardtii, Algal Res., 31, 122, 10.1016/j.algal.2018.01.020 Mallén-Ponce, 2022, Photosynthetic assimilation of CO2 regulates TOR activity, Proc. Natl. Acad. Sci. USA, 119, 10.1073/pnas.2115261119 Manhaeghe, 2020, Experimental assessment and mathematical modelling of the growth of Chlorella vulgaris under photoautotrophic, heterotrophic and mixotrophic conditions, Water Res., 184, 10.1016/j.watres.2020.116152 Giese, 2018, Risks, release and concentrations of engineered nanomaterial in the environment, Sci. Rep., 8, 1565, 10.1038/s41598-018-19275-4 Keller, 2013, Global life cycle releases of engineered nanomaterials, J. Nanopart. Res., 15, 1692, 10.1007/s11051-013-1692-4 Hazeem, 2019, Toxicity effect of silver nanoparticles on photosynthetic pigment content, growth, ROS production and ultrastructural changes of microalgae Chlorella vulgaris, Nanomaterials, 9, 914, 10.3390/nano9070914 Khoshnamvand, 2021, Toxic effects of polystyrene nanoplastics on microalgae Chlorella vulgaris: changes in biomass, photosynthetic pigments and morphology, Chemosphere, 280, 10.1016/j.chemosphere.2021.130725 Miazek, 2015, Effect of metals, metalloids and metallic nanoparticles on microalgae growth and industrial product biosynthesis: a review, Int. J. Mol. Sci., 16, 23929, 10.3390/ijms161023929 Saxena, 2021, Mechanism of nanotoxicity in Chlorella vulgaris exposed to zinc and iron oxide, Toxicol. Rep., 8, 724, 10.1016/j.toxrep.2021.03.023 Pikula, 2020, Comparison of the level and mechanisms of toxicity of carbon nanotubes, carbon nanofibers, and silicon nanotubes in bioassay with four marine microalgae, Nanomaterials, 10, 485, 10.3390/nano10030485 Wan, 2018, Assessing the toxicity of copper oxide nanoparticles and copper sulfate in a tropical Chlorella, J. Appl. Phycol., 30, 3153, 10.1007/s10811-018-1408-3 Biba, 2021, Surface coating-modulated phytotoxic responses of silver nanoparticles in plants and freshwater green algae, Nanomaterials, 12, 24, 10.3390/nano12010024 Moreno-Garrido, 2015, Toxicity of silver and gold nanoparticles on marine microalgae, Mar. Environ. Res., 111, 60, 10.1016/j.marenvres.2015.05.008 Zayadi, 2020, Comparative study on stability, antioxidant and catalytic activities of bio-stabilized colloidal gold nanoparticles using microalgae and cyanobacteria, J. Environ. Chem. Eng., 8, 10.1016/j.jece.2020.103843 Mariano, 2020, Toxicity, bioaccumulation and biotransformation of glucose-capped silver nanoparticles in green microalgae Chlorella vulgaris, Nanomaterials, 10, 1377, 10.3390/nano10071377 Zhang, 2020, Surface charge-dependent bioaccumulation dynamics of silver nanoparticles in freshwater algae, Chemosphere, 247, 10.1016/j.chemosphere.2020.125936 Romero, 2020, Physiological and morphological responses of green microalgae Chlorella vulgaris to silver nanoparticles, Environ. Res., 189, 10.1016/j.envres.2020.109857 Uzair, 2020, Green and cost-effective synthesis of metallic nanoparticles by algae: safe methods for translational medicine, Bioengineering, 7, 129, 10.3390/bioengineering7040129 Davarpanah, 2019, Are gold nanoparticles and microplastics mixtures more toxic to the marine microalgae Tetraselmis chuii than the substances individually?, Ecotoxicol. Environ. Saf., 181, 60, 10.1016/j.ecoenv.2019.05.078 Monteiro, 2019, Effects of long-term exposure to colloidal gold nanorods on freshwater microalgae, Sci. Total Environ., 682, 70, 10.1016/j.scitotenv.2019.05.052 Li, 2020, Enhanced photosynthesis of carotenoids in microalgae driven by light-harvesting gold nanoparticles, ACS Sustain. Chem. Eng., 8, 7600, 10.1021/acssuschemeng.0c00315 Hu, 2020, Multifunctional gold nanoparticles: a novel nanomaterial for various medical applications and biological activities, Front. Bioeng. Biotechnol., 8, 990, 10.3389/fbioe.2020.00990 Kus-Liśkiewicz, 2021, Biocompatibility and cytotoxicity of gold nanoparticles: recent advances in methodologies and regulations, Int. J. Mol. Sci., 22, 10952, 10.3390/ijms222010952 Tao, 2018, Antimicrobial activity and toxicity of gold nanoparticles: research progress, challenges and prospects, Lett. Appl. Microbiol., 67, 537, 10.1111/lam.13082 Iswarya, 2016, Surface capping and size-dependent toxicity of gold nanoparticles on different trophic levels, Environ. Sci. Pollut. Res. Int., 23, 4844, 10.1007/s11356-015-5683-0 Lau, 2022, A review on the diverse interactions between microalgae and nanomaterials: growth variation, photosynthetic performance and toxicity, Bioresour. Technol., 351, 10.1016/j.biortech.2022.127048 Turkevich, 1951, A study of the nucleation and growth processes in the synthesis of colloidal gold, Discuss. Faraday Soc., 11, 55, 10.1039/df9511100055 Oćwieja, 2014, Monolayers of silver nanoparticles obtained by chemical reduction methods, Surf. Innov., 2, 160, 10.1680/si.13.00042 Kim, 2006, Effect of areal chain density on the location of polymer-modified gold nanoparticles in a block copolymer template, Macromolecules, 39, 4108, 10.1021/ma060308w Oćwieja, 2019, Electrokinetic properties of cysteine-stabilized silver nanoparticles dispersed in suspensions and deposited on solid surfaces in the form of monolayers, Electrochim. Acta, 297, 1000, 10.1016/j.electacta.2018.11.213 Kessler, 1970, Physiologische und biochemische Beiträgezur Taxonomie der Gattung Chlorella. IV. Verwertngorganischer Stickstoffverindungen [Physiological and biochemical contributions to the taxonomy of the genus Chlorella. IV. Utilization of organic nitrogen compounds], Arch. Microbiol., 70, 211 Leu, 2005, A programmed cell disintegration of Chlorella after heat stress, Plant Sci., 168, 145, 10.1016/j.plantsci.2004.07.026 Lichtenthaler, 1987, Chlorophylls and carotenoids: Pigments of photosynthetic biomembranes, Methods Enzymol., 148, 350, 10.1016/0076-6879(87)48036-1 Strasser, 2000, The fluorescence transient as a tool to characterize and screen photosynthetic samples, 443 Maciejewska-Prończuk, 2019, Formation of gold nanoparticle bilayers on gold sensors, Colloids Surf. A Physicochem. Eng. Asp., 560, 393, 10.1016/j.colsurfa.2018.10.037 Michota, 2001, Influence of electrolytes on the structure of cysteamine monolayer on silver studied by surface-enhanced Raman scattering, J. Raman Spectrosc., 32, 345, 10.1002/jrs.703 Fan, 2011, A review on the fabrication of substrates for surface enhanced Raman spectroscopy and their applications in analytical chemistry, Anal. Chim. Acta, 693, 7, 10.1016/j.aca.2011.03.002 Oukarroum, 2016, Change in Photosystem II photochemistry during algal growth phases of Chlorella vulgaris and Scenedesmus obliquus, Curr. Microbiol., 72, 692, 10.1007/s00284-016-1004-1 Gill, 2010, Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants, Plant Physiol. Biochem., 48, 909, 10.1016/j.plaphy.2010.08.016 Wu, 2011, In vivo lipidomics using single-cell Raman spectroscopy, Proc. Natl. Acad. Sci. USA, 108, 3809, 10.1073/pnas.1009043108 De Gelder, 2007, Reference database of Raman spectra of biological molecules, J. Raman Spectrosc., 38, 1133, 10.1002/jrs.1734 Wood, 2005, A portable Raman acoustic levitation spectroscopic system for the identification and environmental monitoring of algal cells, Anal. Chem., 77, 4955, 10.1021/ac050281z Schulte, 2008, Chemical characterization and classification of pollen, Anal. Chem., 80, 9551, 10.1021/ac801791a Chan, 2006, Micro-Raman spectroscopy detects individual neoplastic and normal hematopoietic cells, Biophys. J., 90, 648, 10.1529/biophysj.105.066761 Tschirner, 2008, Raman excitation profiles of β-carotene-novel insights into the nature of the ν1-band, Phys. Status Solidi (B), 245, 2225, 10.1002/pssb.200879649 Samek, 2010, Raman microspectroscopy of individual algal cells: sensing unsaturation of storage lipids in vivo, Sensors, 10, 8635, 10.3390/s100908635 Cherney, 2003, Optical-trapping Raman microscopy detection of single unilamellar lipid vesicles, Anal. Chem., 75, 6621, 10.1021/ac034838r Alkilany, 2010, Toxicity and cellular uptake of gold nanoparticles: what we have learned so far, J. Nanopart. Res., 12, 2313, 10.1007/s11051-010-9911-8 ShareenaDasari, 2015, Antibacterial activity and cytotoxicity of gold (I) and (III) ions and gold nanoparticles, Biochem. Pharmacol., 4, 199 Wang, 2019, Effects of nanoparticles on algae: adsorption, distribution, ecotoxicity and fate, Appl. Sci., 9, 1534, 10.3390/app9081534 Wang, 2011, Toxic effects of gold nanoparticles on Salmonella typhimurium bacteria, Toxicol. Ind. Health, 27, 547, 10.1177/0748233710393395 Barbasz, 2017, Toxicity of silver nanoparticles towards tumoral human cell lines U-937 and HL-60, Colloids Surf. B Biointerfaces, 156, 397, 10.1016/j.colsurfb.2017.05.027 Jeitner, 2001, Mechanisms for the cytotoxicity of cysteamine, Toxicol. Sci., 63, 57, 10.1093/toxsci/63.1.57 Gibała, 2021, Antibacterial and antifungal properties of silver nanoparticles - effect of a surface-stabilizing agent, Biomolecules, 11, 1481, 10.3390/biom11101481 Laohaprapanon, 2012, Wastewater generated during cleaning/washing procedures in a wood-floor industry: toxicity on the microalgae Desmodesmussubspicatus, Environ. Technol., 33, 2439, 10.1080/09593330.2012.671853 Liu, 2013, Toxicity of the xenoestrogennonylphenol and its biodegradation by the alga Cyclotella caspia, J. Environ. Sci., 25, 1662, 10.1016/S1001-0742(12)60182-X Zhang, 2019, The influence of four pharmaceuticals on Chlorella pyrenoidosa culture, Sci. Rep., 9, 1624, 10.1038/s41598-018-36609-4 Gao, 2013, Effects of nano-TiO2 on photosynthetic characteristics of Ulmuselon gata seedlings, Environ. Pollut., 176, 63, 10.1016/j.envpol.2013.01.027 Baroni, 2019, The effect of nitrogen depletion on the cell size, shape, density and gravitational settling of Nannochlorops issalina, Chlorella sp. (marine) and Haematococcus pluvialis, Algal Res., 39, 10.1016/j.algal.2019.101454 Fahy, 2017, Impact of salt stress, cell death, and autophagy on peroxisomes: quantitative and morphological analyses using small fluorescent probe NBODIPY, Sci. Rep., 7, 39069, 10.1038/srep39069 Singh, 2019, Photosynthetic performance, nutrient status and lipid yield of microalgae Chlorella vulgaris and Chlorococcum humicola under UV-B exposure, Curr. Opin. Biotechnol., 1, 65, 10.1016/j.crbiot.2019.10.001 Razi, 2021, Drought stress-induced physiological mechanisms, signaling pathways and molecular response of chloroplasts in common vegetable crops, Crit. Rev. Biotechnol., 41, 669, 10.1080/07388551.2021.1874280 Salama, 2011, Effect of ultraviolet radiation on chlorophyll, carotenoid, protein and proline contents of some annual desert plants, Saudi J. Biol. Sci., 18, 79, 10.1016/j.sjbs.2010.10.002 Mulders, 2014, Phototrophic pigment production with microalgae: biological constraints and opportunities, J. Physiol., 50, 229 Chua, 2020, Cold and dark treatments induce omega-3 fatty acid and carotenoid production in Nannochloropsis oceanica, Algal Res., 51, 10.1016/j.algal.2020.102059 Niyogi, 1999, Photoprotection revisited: genetics and molecular approaches, Annu. Rev. Plant Physiol. Plant Mol. Biol., 1999, 333, 10.1146/annurev.arplant.50.1.333 Potijun, 2021, Pigment production under cold stress in the green microalga Chlamydomonas reinhardtii, Agriculture, 11, 564, 10.3390/agriculture11060564 Suzuki, 2006, Reactive oxygen species and temperature stresses: a delicate balance between signaling and destruction, Physiol. Plant., 126, 45, 10.1111/j.0031-9317.2005.00582.x Ye, 2008, Biosynthesis and regulation of carotenoids in Dunaliella: progresses and prospects, Biotechnol. Adv., 26, 352, 10.1016/j.biotechadv.2008.03.004