Characterization of selected parameters of Chlorella vulgaris microalgae after short-term exposure to gold nanoparticles with different surface properties
Tài liệu tham khảo
Pereira, 2020, Extraction, properties, and applications of bioactive compounds obtained from microalgae, Curr. Pharm. Des., 26, 1929, 10.2174/1381612826666200403172206
Pereira, 2021, Macroalgae, Encyclopedia, 1, 177, 10.3390/encyclopedia1010017
Naselli-Flores, 2022, Ecosystem services provided by marine and freshwater phytoplankton, Hydrobiologia, 1
Adarme-Vega, 2012, Microalgal biofactories: a promising approach towards sustainable omega-3 fatty acid production, Microb. Cell Factor., 11, 96, 10.1186/1475-2859-11-96
Klassen, 2017, Highly efficient methane generation from untreated microalgae biomass, Biotechnol. Biofuels, 10, 186, 10.1186/s13068-017-0871-4
Murata, 2021, What do patents tell us about microalgae in agriculture?, AMB Express, 11, 154, 10.1186/s13568-021-01315-4
Scranton, 2015, Chlamydomonas as a model for biofuels and bioproducts production, Plant J., 82, 523, 10.1111/tpj.12780
Sun, 2018, High-value biomass from microalgae production platforms: strategies and progress based on carbon metabolism and energy conversion, Biotechnol. Biofuels, 11, 227, 10.1186/s13068-018-1225-6
Suthar, 2018, Production of Chlorella vulgaris under varying nutrient and abiotic conditions: a potential microalga for bioenergy feedstock, Process Saf. Environ. Prot., 113, 141, 10.1016/j.psep.2017.09.018
Verma, 2022, Phycoremediation of milk processing wastewater and lipid-rich biomass production using Chlorella vulgaris under continuous batch system, Sci. Total Environ., 833, 10.1016/j.scitotenv.2022.155110
Adamczyk, 2016, CO2 biofixation and growth kinetics of Chlorella vulgaris and Nannochloropsis gaditana, Biotechnol. Appl. Biochem., 179, 1248, 10.1007/s12010-016-2062-3
Morales, 2018, The impact of environmental factors on carbon dioxide fixation by microalgae, FEMS Microbiol. Lett., 365, 10.1093/femsle/fnx262
Raja, 2008, A perspective on the biotechnological potential of microalgae, Crit. Rev. Microbiol., 34, 77, 10.1080/10408410802086783
Smith, 2018, The influence of exogenous organic carbon assimilation and photoperiod on the carbon and lipid metabolism of Chlamydomonas reinhardtii, Algal Res., 31, 122, 10.1016/j.algal.2018.01.020
Mallén-Ponce, 2022, Photosynthetic assimilation of CO2 regulates TOR activity, Proc. Natl. Acad. Sci. USA, 119, 10.1073/pnas.2115261119
Manhaeghe, 2020, Experimental assessment and mathematical modelling of the growth of Chlorella vulgaris under photoautotrophic, heterotrophic and mixotrophic conditions, Water Res., 184, 10.1016/j.watres.2020.116152
Giese, 2018, Risks, release and concentrations of engineered nanomaterial in the environment, Sci. Rep., 8, 1565, 10.1038/s41598-018-19275-4
Keller, 2013, Global life cycle releases of engineered nanomaterials, J. Nanopart. Res., 15, 1692, 10.1007/s11051-013-1692-4
Hazeem, 2019, Toxicity effect of silver nanoparticles on photosynthetic pigment content, growth, ROS production and ultrastructural changes of microalgae Chlorella vulgaris, Nanomaterials, 9, 914, 10.3390/nano9070914
Khoshnamvand, 2021, Toxic effects of polystyrene nanoplastics on microalgae Chlorella vulgaris: changes in biomass, photosynthetic pigments and morphology, Chemosphere, 280, 10.1016/j.chemosphere.2021.130725
Miazek, 2015, Effect of metals, metalloids and metallic nanoparticles on microalgae growth and industrial product biosynthesis: a review, Int. J. Mol. Sci., 16, 23929, 10.3390/ijms161023929
Saxena, 2021, Mechanism of nanotoxicity in Chlorella vulgaris exposed to zinc and iron oxide, Toxicol. Rep., 8, 724, 10.1016/j.toxrep.2021.03.023
Pikula, 2020, Comparison of the level and mechanisms of toxicity of carbon nanotubes, carbon nanofibers, and silicon nanotubes in bioassay with four marine microalgae, Nanomaterials, 10, 485, 10.3390/nano10030485
Wan, 2018, Assessing the toxicity of copper oxide nanoparticles and copper sulfate in a tropical Chlorella, J. Appl. Phycol., 30, 3153, 10.1007/s10811-018-1408-3
Biba, 2021, Surface coating-modulated phytotoxic responses of silver nanoparticles in plants and freshwater green algae, Nanomaterials, 12, 24, 10.3390/nano12010024
Moreno-Garrido, 2015, Toxicity of silver and gold nanoparticles on marine microalgae, Mar. Environ. Res., 111, 60, 10.1016/j.marenvres.2015.05.008
Zayadi, 2020, Comparative study on stability, antioxidant and catalytic activities of bio-stabilized colloidal gold nanoparticles using microalgae and cyanobacteria, J. Environ. Chem. Eng., 8, 10.1016/j.jece.2020.103843
Mariano, 2020, Toxicity, bioaccumulation and biotransformation of glucose-capped silver nanoparticles in green microalgae Chlorella vulgaris, Nanomaterials, 10, 1377, 10.3390/nano10071377
Zhang, 2020, Surface charge-dependent bioaccumulation dynamics of silver nanoparticles in freshwater algae, Chemosphere, 247, 10.1016/j.chemosphere.2020.125936
Romero, 2020, Physiological and morphological responses of green microalgae Chlorella vulgaris to silver nanoparticles, Environ. Res., 189, 10.1016/j.envres.2020.109857
Uzair, 2020, Green and cost-effective synthesis of metallic nanoparticles by algae: safe methods for translational medicine, Bioengineering, 7, 129, 10.3390/bioengineering7040129
Davarpanah, 2019, Are gold nanoparticles and microplastics mixtures more toxic to the marine microalgae Tetraselmis chuii than the substances individually?, Ecotoxicol. Environ. Saf., 181, 60, 10.1016/j.ecoenv.2019.05.078
Monteiro, 2019, Effects of long-term exposure to colloidal gold nanorods on freshwater microalgae, Sci. Total Environ., 682, 70, 10.1016/j.scitotenv.2019.05.052
Li, 2020, Enhanced photosynthesis of carotenoids in microalgae driven by light-harvesting gold nanoparticles, ACS Sustain. Chem. Eng., 8, 7600, 10.1021/acssuschemeng.0c00315
Hu, 2020, Multifunctional gold nanoparticles: a novel nanomaterial for various medical applications and biological activities, Front. Bioeng. Biotechnol., 8, 990, 10.3389/fbioe.2020.00990
Kus-Liśkiewicz, 2021, Biocompatibility and cytotoxicity of gold nanoparticles: recent advances in methodologies and regulations, Int. J. Mol. Sci., 22, 10952, 10.3390/ijms222010952
Tao, 2018, Antimicrobial activity and toxicity of gold nanoparticles: research progress, challenges and prospects, Lett. Appl. Microbiol., 67, 537, 10.1111/lam.13082
Iswarya, 2016, Surface capping and size-dependent toxicity of gold nanoparticles on different trophic levels, Environ. Sci. Pollut. Res. Int., 23, 4844, 10.1007/s11356-015-5683-0
Lau, 2022, A review on the diverse interactions between microalgae and nanomaterials: growth variation, photosynthetic performance and toxicity, Bioresour. Technol., 351, 10.1016/j.biortech.2022.127048
Turkevich, 1951, A study of the nucleation and growth processes in the synthesis of colloidal gold, Discuss. Faraday Soc., 11, 55, 10.1039/df9511100055
Oćwieja, 2014, Monolayers of silver nanoparticles obtained by chemical reduction methods, Surf. Innov., 2, 160, 10.1680/si.13.00042
Kim, 2006, Effect of areal chain density on the location of polymer-modified gold nanoparticles in a block copolymer template, Macromolecules, 39, 4108, 10.1021/ma060308w
Oćwieja, 2019, Electrokinetic properties of cysteine-stabilized silver nanoparticles dispersed in suspensions and deposited on solid surfaces in the form of monolayers, Electrochim. Acta, 297, 1000, 10.1016/j.electacta.2018.11.213
Kessler, 1970, Physiologische und biochemische Beiträgezur Taxonomie der Gattung Chlorella. IV. Verwertngorganischer Stickstoffverindungen [Physiological and biochemical contributions to the taxonomy of the genus Chlorella. IV. Utilization of organic nitrogen compounds], Arch. Microbiol., 70, 211
Leu, 2005, A programmed cell disintegration of Chlorella after heat stress, Plant Sci., 168, 145, 10.1016/j.plantsci.2004.07.026
Lichtenthaler, 1987, Chlorophylls and carotenoids: Pigments of photosynthetic biomembranes, Methods Enzymol., 148, 350, 10.1016/0076-6879(87)48036-1
Strasser, 2000, The fluorescence transient as a tool to characterize and screen photosynthetic samples, 443
Maciejewska-Prończuk, 2019, Formation of gold nanoparticle bilayers on gold sensors, Colloids Surf. A Physicochem. Eng. Asp., 560, 393, 10.1016/j.colsurfa.2018.10.037
Michota, 2001, Influence of electrolytes on the structure of cysteamine monolayer on silver studied by surface-enhanced Raman scattering, J. Raman Spectrosc., 32, 345, 10.1002/jrs.703
Fan, 2011, A review on the fabrication of substrates for surface enhanced Raman spectroscopy and their applications in analytical chemistry, Anal. Chim. Acta, 693, 7, 10.1016/j.aca.2011.03.002
Oukarroum, 2016, Change in Photosystem II photochemistry during algal growth phases of Chlorella vulgaris and Scenedesmus obliquus, Curr. Microbiol., 72, 692, 10.1007/s00284-016-1004-1
Gill, 2010, Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants, Plant Physiol. Biochem., 48, 909, 10.1016/j.plaphy.2010.08.016
Wu, 2011, In vivo lipidomics using single-cell Raman spectroscopy, Proc. Natl. Acad. Sci. USA, 108, 3809, 10.1073/pnas.1009043108
De Gelder, 2007, Reference database of Raman spectra of biological molecules, J. Raman Spectrosc., 38, 1133, 10.1002/jrs.1734
Wood, 2005, A portable Raman acoustic levitation spectroscopic system for the identification and environmental monitoring of algal cells, Anal. Chem., 77, 4955, 10.1021/ac050281z
Schulte, 2008, Chemical characterization and classification of pollen, Anal. Chem., 80, 9551, 10.1021/ac801791a
Chan, 2006, Micro-Raman spectroscopy detects individual neoplastic and normal hematopoietic cells, Biophys. J., 90, 648, 10.1529/biophysj.105.066761
Tschirner, 2008, Raman excitation profiles of β-carotene-novel insights into the nature of the ν1-band, Phys. Status Solidi (B), 245, 2225, 10.1002/pssb.200879649
Samek, 2010, Raman microspectroscopy of individual algal cells: sensing unsaturation of storage lipids in vivo, Sensors, 10, 8635, 10.3390/s100908635
Cherney, 2003, Optical-trapping Raman microscopy detection of single unilamellar lipid vesicles, Anal. Chem., 75, 6621, 10.1021/ac034838r
Alkilany, 2010, Toxicity and cellular uptake of gold nanoparticles: what we have learned so far, J. Nanopart. Res., 12, 2313, 10.1007/s11051-010-9911-8
ShareenaDasari, 2015, Antibacterial activity and cytotoxicity of gold (I) and (III) ions and gold nanoparticles, Biochem. Pharmacol., 4, 199
Wang, 2019, Effects of nanoparticles on algae: adsorption, distribution, ecotoxicity and fate, Appl. Sci., 9, 1534, 10.3390/app9081534
Wang, 2011, Toxic effects of gold nanoparticles on Salmonella typhimurium bacteria, Toxicol. Ind. Health, 27, 547, 10.1177/0748233710393395
Barbasz, 2017, Toxicity of silver nanoparticles towards tumoral human cell lines U-937 and HL-60, Colloids Surf. B Biointerfaces, 156, 397, 10.1016/j.colsurfb.2017.05.027
Jeitner, 2001, Mechanisms for the cytotoxicity of cysteamine, Toxicol. Sci., 63, 57, 10.1093/toxsci/63.1.57
Gibała, 2021, Antibacterial and antifungal properties of silver nanoparticles - effect of a surface-stabilizing agent, Biomolecules, 11, 1481, 10.3390/biom11101481
Laohaprapanon, 2012, Wastewater generated during cleaning/washing procedures in a wood-floor industry: toxicity on the microalgae Desmodesmussubspicatus, Environ. Technol., 33, 2439, 10.1080/09593330.2012.671853
Liu, 2013, Toxicity of the xenoestrogennonylphenol and its biodegradation by the alga Cyclotella caspia, J. Environ. Sci., 25, 1662, 10.1016/S1001-0742(12)60182-X
Zhang, 2019, The influence of four pharmaceuticals on Chlorella pyrenoidosa culture, Sci. Rep., 9, 1624, 10.1038/s41598-018-36609-4
Gao, 2013, Effects of nano-TiO2 on photosynthetic characteristics of Ulmuselon gata seedlings, Environ. Pollut., 176, 63, 10.1016/j.envpol.2013.01.027
Baroni, 2019, The effect of nitrogen depletion on the cell size, shape, density and gravitational settling of Nannochlorops issalina, Chlorella sp. (marine) and Haematococcus pluvialis, Algal Res., 39, 10.1016/j.algal.2019.101454
Fahy, 2017, Impact of salt stress, cell death, and autophagy on peroxisomes: quantitative and morphological analyses using small fluorescent probe NBODIPY, Sci. Rep., 7, 39069, 10.1038/srep39069
Singh, 2019, Photosynthetic performance, nutrient status and lipid yield of microalgae Chlorella vulgaris and Chlorococcum humicola under UV-B exposure, Curr. Opin. Biotechnol., 1, 65, 10.1016/j.crbiot.2019.10.001
Razi, 2021, Drought stress-induced physiological mechanisms, signaling pathways and molecular response of chloroplasts in common vegetable crops, Crit. Rev. Biotechnol., 41, 669, 10.1080/07388551.2021.1874280
Salama, 2011, Effect of ultraviolet radiation on chlorophyll, carotenoid, protein and proline contents of some annual desert plants, Saudi J. Biol. Sci., 18, 79, 10.1016/j.sjbs.2010.10.002
Mulders, 2014, Phototrophic pigment production with microalgae: biological constraints and opportunities, J. Physiol., 50, 229
Chua, 2020, Cold and dark treatments induce omega-3 fatty acid and carotenoid production in Nannochloropsis oceanica, Algal Res., 51, 10.1016/j.algal.2020.102059
Niyogi, 1999, Photoprotection revisited: genetics and molecular approaches, Annu. Rev. Plant Physiol. Plant Mol. Biol., 1999, 333, 10.1146/annurev.arplant.50.1.333
Potijun, 2021, Pigment production under cold stress in the green microalga Chlamydomonas reinhardtii, Agriculture, 11, 564, 10.3390/agriculture11060564
Suzuki, 2006, Reactive oxygen species and temperature stresses: a delicate balance between signaling and destruction, Physiol. Plant., 126, 45, 10.1111/j.0031-9317.2005.00582.x
Ye, 2008, Biosynthesis and regulation of carotenoids in Dunaliella: progresses and prospects, Biotechnol. Adv., 26, 352, 10.1016/j.biotechadv.2008.03.004