Characterization of rag 1 mutant zebrafish leukocytes
Tóm tắt
Zebrafish may prove to be one of the best vertebrate models for innate immunology. These fish have sophisticated immune components, yet rely heavily on innate immune mechanisms. Thus, the development and characterization of mutant and/or knock out zebrafish are critical to help define immune cell and immune gene functions in the zebrafish model. The use of Severe Combined Immunodeficient (SCID) and recombination activation gene 1 and 2 mutant mice has allowed the investigation of the specific contribution of innate defenses in many infectious diseases. Similar zebrafish mutants are now being used in biomedical and fish immunology related research. This report describes the leukocyte populations in a unique model, recombination activation gene 1-/- mutant zebrafish (rag 1 mutants). Differential counts of peripheral blood leukocytes (PBL) showed that rag 1 mutants had significantly decreased lymphocyte-like cell populations (34.7%) compared to wild-types (70.5%), and significantly increased granulocyte populations (52.7%) compared to wild-types (17.6%). Monocyte/macrophage populations were similar between mutants and wild-types, 12.6% and 11.3%, respectively. Differential leukocyte counts of rag 1 mutant kidney hematopoietic tissue showed a significantly reduced lymphocyte-like cell population (8%), a significantly increased myelomonocyte population (57%), 34.8% precursor cells, and 0.2% thrombocytes, while wild-type hematopoietic kidney tissue showed 29.4% lymphocytes/lymphocyte-like cells, 36.4% myelomonocytes, 33.8% precursors and 0.5% thrombocytes. Flow cytometric analyses of kidney hematopoietic tissue revealed three leukocyte populations. Population A was monocytes and granulocytes and comprised 34.7% of the gated cells in rag 1 mutants and 17.6% in wild-types. Population B consisted of hematopoietic precursors, and comprised 50% of the gated cells for rag 1 mutants and 53% for wild-types. Population C consisted of lymphocytes and lymphocyte-like cells and comprised 7% of the gated cells in the rag 1 mutants and 26% in the wild-types. Reverse transcriptase polymerase chain reaction (RT-PCR) assays demonstrated rag 1 mutant kidney hematopoietic tissue expressed mRNA encoding Non-specific Cytotoxic cell receptor protein-1 (NCCRP-1) and Natural Killer (NK) cell lysin but lacked T cell receptor (TCR) and immunoglobulin (Ig) transcript expression, while wild-type kidney hematopoietic tissue expressed NCCRP-1, NK lysin, TCR and Ig transcript expression. Our study demonstrates that in comparison to wild-type zebrafish, rag 1 mutants have a significantly reduced lymphocyte-like cell population that likely includes Non-specific cytotoxic cells (NCC) and NK cells (and lacks functional T and B lymphocytes), a similar macrophage/monocyte population, and a significantly increased neutrophil population. These zebrafish have comparable leukocyte populations to SCID and rag 1 and/or 2 mutant mice, that possess macrophages, natural killer cells and neutrophils, but lack T and B lymphocytes. Rag 1 mutant zebrafish will provide the platform for remarkable investigations in fish and innate immunology, as rag 1 and 2 mutant mice did for mammalian immunology.
Tài liệu tham khảo
Traver D, Herbomel P, Patton E, Murphey R, Yoder J, Litman G, Catic A, Amemiya C, Zon L, Trede N: The zebrafish as a model organism to study development of the immune system. Advances in Immunology. 2003, 81: 253-330.
Barbazuk W, et al.: The syntenic relationship of zebrafish and human genomes. Genome Research. 2000, 10: 1351-1358. 10.1101/gr.144700.
Trede NS, Langenau DM, Traver D, Look AT, Zon LI: The use of zebrafish to understand immunology. Immunity. 2004, 20: 367-379. 10.1016/S1074-7613(04)00084-6.
Dorschkind K: The severe combined immunodeficient (SCID) mouse. Immunological disorders in mice. Edited by: Rihova B, VVetvicka V. 1990, Boca Raton, Fla.: CRC Press, Inc, 1-21.
Mombaerts P, Iacomini J, Johnson RS, Herrup K, Tonegawa S, Papaioannou VE: RAG-1-deficient mice have no mature B and T lymphocytes. Cell. 1992, 68: 869-77. 10.1016/0092-8674(92)90030-G.
Wienholds E, Merker SS, Walderich B, Plasterk RHA: Target-Selected inactivation of the Zebrafish rag1 Gene. Science. 2002, 297: 99-101. 10.1126/science.1071762.
Schatz D, Oettinger M, Baltimore D: The V(D)J recombination activating gene, RAG-1. Cell. 1989, 59: 1035-48. 10.1016/0092-8674(89)90760-5.
Haire R, Rast J, Litman R, Litman G: Characterization of three isotypes of immunoglobulin light chains and T-cell antigen receptor a in zebrafish. Immunogenetics. 2000, 51: 915-923. 10.1007/s002510000229.
Murtha J, Qi W, Keller E: Hematological and serum biochemical values for zebrafish (Danio rerio). Comparative Medicine. 2003, 52: 37-41.
Traver D, Paw B, Poss K, Penberthy W, Lin S, Zon L: Transplantation and in vivo imaging of multilineage engraftment in zebrafish bloodless mutants. Nature Immunology. 2003, 4: 1238-1246. 10.1038/ni1007.
Bennett CM, Kanki JP, Rhodes J, Liu TX, Paw BH, Kieran MW, Langenau DM, Delahaye-Brown A, Zon LI, Fleming MD, et al.: Myelopoiesis in the zebrafish, Danio rerio. Blood. 2001, 98: 643-651. 10.1182/blood.V98.3.643.
Lieschke GJ, Oates AC, Crowhurst MO, Ward AC, Layton JE: Morphological and functional characterization of granulocytes and macrophages in embryonic and adult zebrafish. Blood. 2001, 96: 3087-3096. 10.1182/blood.V98.10.3087.
Jagadeeswaran P, Sheehan JP, Craig FE, Troyer D: Identification and characterization of zebrafish thrombocytes. British Journal of Haematology. 1999, 107: 731-738. 10.1046/j.1365-2141.1999.01763.x.
Carradice D, Lieschke G: Zebrafish in hematology: sushi or science?. Blood. 2008, 111: 3331-42. 10.1182/blood-2007-10-052761.
Traver D, Winzeler A, Stern H, Mayhall E, Langenau D, Kutok J, Look A, Zon L: Effects of lethal irradiation in zebrafish and rescue by hematopoietic cell transplantation. Blood. 2004, 104: 1298-1305. 10.1182/blood-2004-01-0100.
Schorpp M, Bialecki M, Diekhoff D, Walderich B, Odenthal J, Maischein H, Zapata A, Consortium TS, Group FS, Boehm T: Conserved functions of Ikaros in vertebrate lymphocyte development: genetic evidence for distinct larval and adult phases of T cell development and two lineages of B cells in zebrafish. J Immunol. 2006, 177 (4): 2463-2476.
Morgan J, Pottinger T, Rippon P: Evaluation of flow cytometry as a method for quantification of circulating blood cell populations in salmonid fish. Journal of Fish Biology. 1993, 42: 131-141. 10.1111/j.1095-8649.1993.tb00311.x.
Inoue T, Moritomo T, Tamura Y, Mamiya S, Fujino H, Nakanishi T: A new method for fish leucocyte counting and partial differentiation by flow cytometry. Fish & Shellfish Immunology. 2002, 13: 379-390. 10.1006/fsim.2002.0413.
Uchiyama R, Moritomo T, Kai O, Uwatoko K, Inoue Y, Nakanishi T: Counting absolute number of lymphocytes in quail blood by flow cytometry. Journal of Veterinary Medical Science. 2005, 67: 441-444. 10.1292/jvms.67.441.
Su F, Juarez M, Cooke C, LaPointe L, Shavit J, Yamaoka J, Lyons S: Differential Regulation of Primitive Myelopoiesis in the Zebrafish by Spi-1 = Pu.1 and C = ebp1. Zebrafish. 2007, 4: 1-13. 10.1089/zeb.2007.0505.
Crowhurst M, Layton J, Lieschke G: Developmental biology of zebrafish myeloid cells. Int J Dev Biol. 2002, 46: 483-492.
Yoder JA: Investigating the morphology, function and genetics of cytotoxic cells in bony fish. Comp Biochem Physiol C Toxicol Pharmacol. 2004, 138 (3): 271-280. 10.1016/j.cca.2004.03.008.
Swaim LE, Connolly LE, Volkman HE, Humbert O, Born DE, Ramakrishnan L: Mycobacterium marinum infection of adult zebrafish causes caseating granulomatous tuberculosis and is moderated by adaptive immunity. Infection and Immunity. 2006, 74: 6108-6117. 10.1128/IAI.00887-06.
O'Leary J, Mahmoud G, Drayton D, Andrian Uv: T cell- and B cell-independent adaptive immunity mediated by natural killer cells. Nature Immunology. 2006, 7: 507-516. 10.1038/ni1332.
Feng B, Bulchand S, Yaksi E, Friedrich RW, Jesuthasan S: The recombination activating gene I (RagI) is expressed in a subset of zebrafish olfactory neurons but is not essential for axon targeting or amino acid detection. BMC Neuroscience. 2005, 6: 46-57. 10.1186/1471-2202-6-46.
Hohn CM, Petrie-Hanson L: Low-cost aquatic lab animal holding system. Zebrafish. 2007, 4: 117-122. 10.1089/zeb.2006.0501.
Tübingen 2000 Screen Consortium: Max-Planck-Institut fur Entwicklungsbiologie, Tubingen, Bebber van F, Busch-Nentwich E, Dahm R, Frohnhofer H-G, Geiger H, Gilmour D, Holley S, Hooge J, Julich D, Knaut H, Maderspacher F, Maischein H-M, Neumann C, Nicolson T, Nusslein-Volhard C, Roehl H, Schonberger U, Seiler C, Sollner C, Sonawane M, Wehner A, Weiler C, Exelis Deutschland GmbH, Tubingen, Erker P, Habeck H, Hagner U, Hennen Kaps C, Kirchner A, Koblizek T, Langheinrich U, Loeschke C, Metzger C, Nordin R, Odenthal J, Pezzuti A, Schlombs K, deSantana-Stamm J, Trowe T, Vacun G, Walderich B, Walker A, Weiler C:
RJ Roberts, (ed): Fish Pathology. 2001, London: W.B. Saunders, Harcourt Publishers Ltd, Third
MK Stoskopf: Fish Medicine. 1993, Philadelphia: W.B. Saunders Company