Characterization of plant growth-promoting, antifungal, and enzymatic properties of beneficial bacterial strains associated with pulses rhizosphere from Bundelkhand region of India

Brazilian Journal of Microbiology - Tập 54 Số 3 - Trang 2349-2360 - 2023
Ragini Mishra1, Sonika Pandey1, Utkarsh Singh Rathore1, Monika Mishra1, Krishna Kumar1, Sandeep Kumar1, L. Manjunatha1
1ICAR-Indian Institute of Pulses Research, Kanpur, India

Tóm tắt

Từ khóa


Tài liệu tham khảo

Sah U, Dixit GP, Kumar H, Ojha J, Katiyar M, Singh V, Dubey SK, Singh NP (2021) Dynamics of pulse scenario in Bundelkhand region of Uttar Pradesh: a temporal analysis. Indian J Extension Education 57:97–103

Sharma MK, Sisodia BVS (2018) Pulses area out of reach-a regional study of Uttar Pradesh. Int J Agric Sci 10:5335–5342

Kumar R, Singh SK, Sah U (2017) Multidimensional study of pulse production in Bundelkhand region of India. Legum Res 40:2046–2052. https://doi.org/10.18805/LR-3502

Pandey NK, Dikshit A, Tewari D, Yadav NK, Somvanshi SPS (2019) Pulses production in Lalitpur district of Bundelkhand region: constraints and opportunities. Indian J Extension Education 55:35–39

Wani SP, Rockstrom J, Oweis T (2009) Rainfed agriculture: unlocking the potential. Wallingford, UK: CABI; Patancheru, Andhra Pradesh, India: International Crops Research Institute for the Semi-Arid Tropics (ICRISAT); Colombo, Sri Lanka: International Water Management Institute (IWMI), p 310

Anonymous (2013) FAQ Press economics and statistics, ministry of agriculture government of India, New Delhi 34–38

Desai S, Prasad RD, Kumar GP (2019) Fusarium wilts of chickpea, pigeon pea and lentil and their management. In: Singh, D, Prabha R. (eds) Microbial Interventions in Agriculture and Environment. Springer, Singapore

Vandana UM, Chopra A, Choudhury A, Adapa D, Mazumder PB (2018) Genetic diversity and antagonistic activity of plant growth promoting bacteria, isolated from tea-rhizosphere: a culture dependent study. Biomedical Res 29:853–864. https://goo.gl/52qUST

Muleta D, Assefa F, Granhall U (2007) In vitro antagonism of rhizobacteria isolated from Coffea Arabica L. against emerging fungal coffee pathogens. Eng Life Sci 7:1–11

Nakkeeran S, Fernando WGD, Siddiqui ZA (2005) Plant growth promoting rhizobacteria formulations and its scope in commercialization for the management of pests and dieases. In: Siddiqui Z.A., editor. PGPR: Biocontrol and Biofertilization. Springer; Dordrecht, The Netherlands. 257–296

Zhao L, Xu Y, Lai X-H, Shan C, Deng Z, JiY, (2015) Screening and characterization of endophytic Bacillus and Paenibacillus strains from medicinal plant Lonicera japonica for use as potential plant growth promoters. Braz J Microbiol 46(4):977–989

Preston GM (2004) Plant perceptions of plant growth-promoting Pseudomonas. Philos Trans R Soc Lond B Biol Sci 359(1446):907–18. https://doi.org/10.1098/rstb.2003.1384

Gowhar HD, Suhaib A, Bandh AN, Kamili RN, Rouf AB (2013) Comparative analysis of different types of bacterial colonies from the soils of Yusmarg Forest, Kashmir Valley. India Ecol Balkanica 5(31):35

Aparna, Y. and Sarada, J (2012) Molecular characterization and phylogenetic analysis of serratia sp-YAJS an extracellular dnase producer isolated from rhizosphere soil. 53:78-84

Wahyudi AT, Astuti RI, Giyanto (2011) Screening of Pseudomonas sp isolated from rhizosphere of soybean plant as plant growth promoter and biocontrol agent. Am J Agric Biol Sci (In press)

Avishai BD, Charles E, Davidson (2014) Estimation method for serial dilution experiments. J Microbiol Methods 107:214–221

Lane DJ (1991)16S/23SrRNA sequencing in nucleic acid technique in bacterial systematics, eds E. Stackebrandt and M. Good fellow (New york, NY: John Wiley and Sons) 115–175

Bellemain E, Carlsen T, Brochmann C (2010) ITS as an environmental DNA barcode for fungi: an in silico approach reveals potential PCR biases. BMC Microbiol 10:189

Maniatis T, Fritsch EF, Sambrook JK (1982) Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory, Cold Spring Harbor

Altschul SF, Madden TL, Schäffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–402. https://doi.org/10.1093/nar/25.17.3389

Umana R (1968) Reevaluation of the method of Kunitz for the assay of proteolytic activities in liver and brain homogenate Anal. Biochem 26(3):430–438

Reissig JL, Strominger JL, Leloir LF (1955) A modification colorimetric method for the estimation of N-acetylamino sugars. J Biol Chem 27:959–966

Miller GL (1959) Modified DNS method for reducing sugars. Anal Chem 31:426–428

García CA, De Rossi BP, Alcaraz E, Vay C, Franco M (2012) Siderophores of Stenotrophomonas maltophilia: detection and determination of their chemical nature. Rev Argent Microbiol 44:150–154

Cappuccino JC, Sherman N (1992) Microbiology: a laboratory manual. Benjamin/Cummings, New York, NY, USA

Nautiyal CS (1999) An efficient microbiological growth medium for screening phosphate solubilizing microorganisms. FEMS Microbiol Lett 170:265–270

Kovacs N (1956) Identification of Pseudomonas pyocyanae by oxidase reaction. Nature 178:703. https://doi.org/10.1038/178703a0

Sharma A, Dev K, Sourirajan A (2021). Isolation and characterization of salt-tolerant bacteria with plant growth-promoting activities from saline agricultural fields of Haryana, India. J Genet Eng Biotechnol 19

Panda MK, Sahu MK, Tayung K (2013) Isolation and characterization of a thermophilic Bacillus sp. with protease activity isolated from hot spring of Tarabalo, Odisha India. Iran J Microbiol 5(2):159–65

Morton DJ, Stroube WH (1955) Antagonistic and stimulating effects of soil micro-organism of Sclerotium. Phytopathol 45:417–420

White PJ, Ward H, Cassel JA (2005) Vicious and virtuous circles in the dynamics of infectious disease and the provision of healthcare: gonorrhea in Britain as an example. J Infect Dis 192:824–836

Teather RM, Wood PJ (1982) Use of Congo red-polysaccharide interactions in enumeration and characterization of cellulolytic bacteria from the bovine rumen. Appl Environ Microbiol 43:777–780

Raaijmakers JM, Vlami M, De Souza JT (2002) Antibiotic production by bacterial biocontrol agents. Antonie Van Leeuwenhoek 81:537

Nielse TH, Sorensen J (2003) Production of cyclic lipopeptides by Pseudomonas fluorescens strains in bulk soil and in the sugar beet rhizosphere. Appl Environ Microbiol 69:861–868

Goodfellow M, Sutcliffe I (2014) Chun J (2014) New approaches to prokaryotic systematics. Academic Press, Ne York

Manchanda G, Garg N (2008) Salinity and its effects on the functional biology of legumes. Acta Physiol Plant 30:595–618. https://doi.org/10.1007/s11738-008-0173-3

Bashan Y, Holguin G (1997) Azospirillum–plant relationships: environmental and physiological advances (1990–1996). Can J Microbiol 43:103–121. https://doi.org/10.1139/m97-015

Kumar H, Arora NK, Kumar V, Maheshwari DK (1999) Isolation, characterization and selection of salt-tolerant rhizobia nodulating Acacia catechu and Acacia nilotica. Symbiosis 26:279–288

Dobbelaere S, Croonenborghs A, Thys A, Ptacek D, Vanderleyden J, Dutto P et al (2001) Responses of agronomically important crops to inoculation with emph type”2Azospirillum</emph>. Funct Plant Biol 28:871–879. https://doi.org/10.1071/PP01074

Bashan Y, Holguin G, de Bashan LE (2004) Azospirillum-plant relationships: physiological, molecular, agricultural, and environmental advances (1997–2003). Can J Microbiol 50:521–577. https://doi.org/10.1139/w04-035

Dardanelli MS, Fernández de Córdoba FJ, Espuny MR, Rodríguez Carvajal MA, Soria Díaz ME, Gil Serrano AM et al (2008) Effect of Azospirillum brasilense coinoculated with Rhizobium on Phaseolus vulgaris flavonoids and Nod factor production under salt stress. Soil Biol Biochem 40:2713–2721. https://doi.org/10.1016/j.soilbio.2008.06.016

Meena KK, Sorty AM, Bitla UM, Choudhary K, Gupta P, Pareek A et al (2017) Abiotic stress responses and microbe-mediated mitigation in plants: the omics strategies. Front Plant Sci 8:172. https://doi.org/10.3389/fpls.2017.00172

Yasin NA, Khan WU, Ahmad SR, Ali A, Ahmad A, Akram W (2018) Imperative roles of halotolerant plant growth-promoting rhizobacteria and kinetin in improving salt tolerance and growth of black gram (Phaseolus mungo). Environ Sci Pollut Res 25:4491–4505. https://doi.org/10.1007/s11356-017-0761-0

Jatan R, Chauhan PS, Lata C (2019) Pseudomonas putida modulates the expression of miRNAs and their target genes in response to drought and salt stresses in chickpea (Cicer arietinum L.). Genomics 111:509–519. https://doi.org/10.1016/j.ygeno.2018.01.007

Rath CC (1999) Heat stable lipase activity of thermotolerant bacteria from hot springs at Orissa. India Cytobios 99:105–111

Du Toit LJ (2004) Management of diseases in seed crops. In: Goodman R (ed) Encyclopedia of plant and crop science (pp 675–677)

Hanane B, Abdelilah M, Jane R, Said M, Cherkaoui El M (2022) The effects of mycorrhizal fungi on vascular wilt diseases. Crop Protection 155

Bashan Y, de-Bashan LE (2010) How the plant growth-promoting bacterium Azospirillum promotes plant growth—a critical assessment. Adv Agron 108:77–136. Elsevier, Amsterdam

Mishra RK, Rathore US, Pandey S, Mishra M, Sharma N, Kumar S, Tripathi KBM (2022) Plant–rhizospheric microbe interactions: enhancing plant growth and improving soil biota. In: Singh UB, Rai JP, Sharma AK (eds) Re-visiting the Rhizosphere Eco-system for Agricultural Sustainability. Rhizosphere Biology. Springer, Singapore

Mishra RK, Monika Mishr, Sonika Pandey, Naimuddin (2020) Bacillus altitudidnis: new biocontrol against for phytopthora stem blight and dry root rot disease of pigeonpea. ICAR-Pulses News letter 31:2

Abdul Rahman NSN, Abdul Hamid NW, Nadarajah K (2021) Effects of abiotic stress on soil microbiome. Int J Mol Sci 22(16):9036. https://doi.org/10.3390/ijms22169036