Characterization of photo-transformation products of the antibiotic drug Ciprofloxacin with liquid chromatography–tandem mass spectrometry in combination with accurate mass determination using an LTQ-Orbitrap

Chemosphere - Tập 115 - Trang 40-46 - 2014
Tarek Haddad1,2, Klaus Kümmerer1
1Institute of Sustainable and Environmental Chemistry, Leuphana University Lüneburg, Scharnhorststraße 1, D-21335 Lüneburg, Germany
2Department of Pharmacology, Faculty of Pharmacy, University of Aleppo, Aleppo, Syrian Arab Republic

Tài liệu tham khảo

Albini, 2003, Photophysics and photochemistry of fluoroquinolones, Chem. Soc. Rev., 32, 238, 10.1039/b209220b An, 2010, Kinetics and mechanism of advanced oxidation processes (AOPs) in degradation of ciprofloxacin in water, Appl. Catal. B-Environ., 94, 288, 10.1016/j.apcatb.2009.12.002 Burhenne, 1997, Primary photoproducts and half-lives, Environ. Sci. Pollut. R., 4, 10, 10.1007/BF02986257 Calza, 2008, Characterization of intermediate compounds formed upon photoinduced degradation of quinolones by high-performance liquid chromatography/high-resolution multiple-stage mass spectrometry, Rapid Commun. Mass Sp., 22, 1533, 10.1002/rcm.3537 Christian, 2003, Determination of antibiotic residues in manure, soil, and surface waters, Acta Hydroch. Hydrob., 31, 36, 10.1002/aheh.200390014 Escher, 2009, JEM spotlight: monitoring the treatment efficiency of a full scale ozonation on a sewage treatment plant with a mode-of-action based test battery, J. Environ. Monitor., 11, 1836, 10.1039/b907093a Fatta-Kassinos, 2011, Transformation products of pharmaceuticals in surface waters and wastewater formed during photolysis and advanced oxidation processes – degradation, elucidation of byproducts and assessment of their biological potency, Chemosphere, 85, 693, 10.1016/j.chemosphere.2011.06.082 Gartiser, S., Hafner, C., Happel, O., Hassauer, M., Kronenberger-Schäfer, K., Kümmerer, K., Längin A., Schneider, K., Schuster, A., Thoma, A., 2011. Identifizierung und Bewertung ausgewählter Arzneimittel und ihrer Metaboliten (Ab- und Umbauprodukte) im Wasserkreislauf, Umweltbundesamt 46/2011. Giger, 2003, Antibiotikaspuren auf dem Weg von Spital- und Gemeindeabwasser in die Fliessgewässer: Umweltanalytische Untersuchungen über Einträge und Verhalten, 21 Golet, 2002, Determination of fluoroquinolone antibacterial agents in sewage sludge and sludge-treated soil using accelerated solvent extraction followed by solid-phase extraction, Anal. Chem., 74, 5455, 10.1021/ac025762m Guo, 2013, Photochemical degradation of ciprofloxacin in UV and UV/H2O2 process: kinetics, parameters, and products, Environ. Sci. Pollut. R., 20, 3202, 10.1007/s11356-012-1229-x Halling-Sørensen, 1998, Occurrence, fate and effects of pharmaceutical substances in the environment – a review, Chemosphere, 36, 357, 10.1016/S0045-6535(97)00354-8 Kugelmann, 2011, Fenton’s oxidation: a tool for the investigation of potential drug metabolites, J. Pharmaceut. Biomed., 54, 1047, 10.1016/j.jpba.2010.12.016 Kümmerer, 2009, Antibiotics in the aquatic environment – a review – part I, Chemosphere, 75, 417, 10.1016/j.chemosphere.2008.11.086 Lester, 2011, Removal of pharmaceuticals using combination of UV/H2O2/O3 advanced oxidation process, Water Sci. Technol., 64, 2230, 10.2166/wst.2011.079 Makarov, 2006, Dynamic range of mass accuracy in LTQ orbitrap hybrid mass spectrometer, J. Am. Soc. Mass Spectr., 17, 977, 10.1016/j.jasms.2006.03.006 Mella, 2001, Photochemistry of 1-cyclopropyl-6-fluoro-1,4-dihydro-4-oxo-7-(piperazin-1-yl)quinoline-3-carboxylic acid (ciprofloxacin) in aqueous solutions, Helv. Chim. Acta, 84, 2508, 10.1002/1522-2675(20010919)84:9<2508::AID-HLCA2508>3.0.CO;2-Y Paul, 2010, Photolytic and photocatalytic decomposition of aqueous ciprofloxacin: transformation products and residual antibacterial activity, Water Res., 44, 3121, 10.1016/j.watres.2010.03.002 Peterman, 2006, Application of a linear ion trap/orbitrap mass spectrometer in metabolite characterization studies: examination of the human liver microsomal metabolism of the non-tricyclic anti-depressant nefazodone using data-dependent accurate mass measurements, J. Am. Soc. Mass Spectr., 17, 363, 10.1016/j.jasms.2005.11.014 Schwabe, 2011 Sturini, 2012, Photolytic and photocatalytic degradation of fluoroquinolones in untreated river water under natural sunlight, Appl. Catal. B-Environ., 119–120, 32, 10.1016/j.apcatb.2012.02.008 Sunderland, 2001, Antimicrobial activity of fluoroquinolone photodegradation products determined by parallel-line bioassay and high performance liquid chromatography, J. Antimicrob. Chemoth., 47, 271, 10.1093/jac/47.3.271 Torniainen, 1996, The effect of pH, buffer type and drug concentration on the photodegradation of ciprofloxacin, Int. J. Pharm., 132, 53, 10.1016/0378-5173(95)04332-2 Turiel, 2005, Study of the evolution and degradation products of ciprofloxacin and oxolinic acid in river water samples by HPLC–UV/MS/MS–MS, J. Environ. Monitor., 7, 189, 10.1039/B413506G Vasconcelos, 2009, Photo-degradation of the antimicrobial ciprofloxacin at high pH: identification and biodegradability assessment of the primary by-products, Chemosphere, 76, 487, 10.1016/j.chemosphere.2009.03.022 Vasconcelos, 2009, Ciprofloxacin in hospital effluent: degradation by ozone and photoprocesses, J. Hazard. Mater., 169, 1154, 10.1016/j.jhazmat.2009.03.143 Watkinson, 2007, Removal of antibiotics in conventional and advanced wastewater treatment: implications for environmental discharge and wastewater recycling, Water Res., 41, 4164, 10.1016/j.watres.2007.04.005 Wetzstein, 1999, Degradation of ciprofloxacin by basidiomycetes and identification of metabolites generated by the brown rot fungus Gloeophyllum striatum, Appl. Environ. Microb., 65, 1556, 10.1128/AEM.65.4.1556-1563.1999