Characterization of pervious concrete exposed to high levels of evaporation

Springer Science and Business Media LLC - Tập 12 - Trang 1-8 - 2019
José Mora-Ruacho1, Antonio Aguado2, Fernando R. Astorga-Bustillos1
1School of Engineering, Autonomous University of Chihuahua, New Campus, Chihuahua, México
2Enginyeria Civil i Ambiental, Edifici C1, Barcelona, Spain

Tóm tắt

When fresh concrete is exposed to high levels of water by evaporation in structures with large ratios of surface/thickness these are prone to be altered in their constituent material properties, generating a decreased or poorer performance than they were conceived. The study shows the effects of high evaporation levels of exposure on pervious concretes, plain and reinforced with polymeric fibers exposed to extreme drying. By the continuous monitoring of the measured parameters, it is possible to establish the material behavior from the initial stage up to a stable behavior. Measurements of evaporation, vertical and horizontal strain and temperature served as parameters to support the theoretical framework of the behavior of the material by drying. The results of evaporation rates resulted very low if compared with non-pervious concretes and seem to be related with the corresponded strain values. Vertical and horizontal strains resulted similar between concretes and with very low values, where cracking was inhibited. The fiber addition resulted without any benefit in the strain reduction. An important factor found in the relationship between water loss and paste binder is the risk that w/b ratios arrive to critical values, where there is the possibility the minimum hydration kinetics cannot be completed, observed particularly in lower w/b concretes.

Tài liệu tham khảo

C.J. Vörösmarty, P.B. McIntyre, M.O. Gessner, D. Dudgeon, A. Prusevich, P. Green, S. Glidden, SE. Bunn, C.A. Sullivan, C.R. Liermann, P.M. Davies, Global threats to human water security and river biodiversity, Nature 468 (2010) 334–334. J. Yang, G. Jiang, Experimental study on properties of pervious concrete pavement materials, Cem. Concr. Res. 33 (2003) 381–386. D.C. Fresno, J.R. Bayón, J.R. Hernández, F.B. Muñoz, Sistemas Urbanos de Drenaje Sostenible (SUDS), Interciencia 30 (2005) 255–260. D. Castro-Fresno, V.C. Andrés-Valeri, L.A. Sañudo-Fontaneda, J. Rodríguez-Hernández, Sustainable drainage practice in Spain, specially focused on pervious pavements. Water 5 (2013) 67–93. M. Aamer Rafique Bhutta, N. Hasanah, N. Farhayu, M.W. Hussin, M.B.M. Tahir, J. Mirza, Properties of porous concrete from waste crushed concrete (recycled aggregate), Constr. Build. Mater. 47 (2013) 1243–1248. CI Committee, Specification for Pervious Concrete Pavemen. 522.1–13. AC1, 2013. J.T. Kevern, V.R. Schaefer, K. Wang, Temperature Behavior of Pervious Concrete Systems, Transp. Res. Rec. J. Transp. Res. Board. 2098 (2009) 94–101. M.A. Pindado, A. Aguado, A. Josa, Fatigue behavior of polymer modified porous concretes. Cem. Conc. Res. 29 (1999) 1077–1083. A. Josa, C. Jofré, A. Aguado, E. Eickschen, E. Onstenk, Étude expérimentale et analyse structurelle de bétons poreux pour couches de roulement de chaussées en béton de ciment, Bull. Des Lab. Des Ponts Chaussees 208 (1997) 3–15. V. Schaefer, K. Wang, M. Suleiman, J. Kevern, Mix design development for pervious concrete in cold weather climates, Nat. Concr. Pav. Tech. Cent. (2006) 83. P. Pujadas, A. Blanco, S.H.P. Cavalaro, A. Aguado, S. Grünewald, K. Blom, J.C. Walraven, Plastic fibres as the only reinforcement for flat suspended slabs: Parametric study and design considerations, Constr. Build. Mater. 70 (2014) 88–96. W. Lerch, Plastic shrinkage. ACI J. 53 (1957) 797–802. D. Ravina, R. Shalon, Plastic shrinkage cracking, ACI J. 65 (1968) 282–291. P. Grassl, H.S. Wong, N.R. Buenfeld, Influence of aggregate size and volume fraction on shrinkage induced micro-cracking of concrete and mortar. Cem. Concr. Res. 40 (2010) 85–93. A. Idiart, J. Bisschop, A. Caballero, P. Lura, A numerical and experimental study of aggregate-induced shrinkage cracking in cementitious composites, Cem. Concr. Res. 42 (2012) 272–281. P. Soroushian, S. Ravanbakhsh, Control of plastic shrinkage cracking with specialty cellulose fibers, ACI Mater. J. 95 (1998) 429–435. E. Boghossian, L.D. Wegner, Use of flax fibres to reduce plastic shrinkage cracking in concrete, Cem. Concr. Compos. 30 (2008) 929–937. J. Branch, A. Rawling, D.J. Hannant, M. Mulheron, The effects of fibres on the plastic shrinkage cracking of high strength concrete. Mater. Struct. 35 (2002) 189–194. Y. Ma, M. Tan, K. Wu, Effect of different geometric polypropylene fibers on plastic shrinkage cracking of cement mortars, Mater. Struct. 35 (2002) 165–169. T. Aly, J.G. Sanjayan, F. Collins, Effect of polypropylene fibers on shrinkage and cracking of concretes. Mater. Struct. 41 (2008) 1741–1753. P.S. Mangat, M.M. Azari, Plastic shrinkage of steel fibre reinforcedconcrete. Mater. Struct. 23 (1990) 186–195. M.G. Alberti, A. Enfedaque, J.C. Galvez, Fracture mechanics of polyolefine fibre reinforced concrete: Study of the influence of the concrete properties, casting procedures, the fibre length and specimen size. Eng. Fract. Mech. 154 (2016) 225–244. M.G. Alberti, A. Enfedaque, J.C. Galvez, A. Ferreras, Pull-out behaviour and critical parameters of polyolefine fibres embedded in mortar and self-compacting concrete matrixes. Const. Build. Mater. 112 (2016) 607–622. Y. Shao, A. Mirmiran, Control of Plastic Shrinkage Cracking of Concrete with Carbon Fiber-Reinforced Polymer Grids, J. Mater. Civ. Eng. 19 (2007) 441–444. S.P. Shah, M.P. Karaguler, M. Sarigaphuti, Effects of shrinkage reducing Admixture on restrained shrinkage cracking of concrete. ACI Mater. J. 89(3) (1992) 289–295. P. Lura, B. Pease, G.B. Mazzotta, F. Rajabipour, J. Weiss, Influence of shrinkage-reducing admixtures on development of plastic shrinkage cracks, ACI Mater. J. 104 (2007) 187–194. J. Mora, M.A. Martín, R. Gettu, A. Aguado, Study of plastic shrinkage cracking in concrete and the influence of fibers and a shrinkage reducing admixture. L’Industria italiana del cemento 71 (2001) 828–837. J. Mora, A. Aguado, R. Gettu, Influencia de los aditivos reductores de retracción sobre la retracción plástica, in: Mater. Constr. (2003) 71–80. J. Mora-Ruacho, R. Gettu, A. Aguado, Influence of shrinkage-reducing admixtures on the reduction of plastic shrinkage cracking in concrete, Cem. Concr. Res. 39 (2009) 141–146. I.B. Topcu, V.B. Elgin, Influence of concrete properties on bleeding and evaporation, Cem. Concr. Res. 34 (2004) 275–281. V.N.T. Dao, P.H. Morris, P.F. Dux, On equations for the total suction and its matric and osmotic components, Cem. Concr. Res. 38 (2008) 1302–1305. F.H. Wittmann, On the action of capillary pressure in fresh concrete, Cem. Concr. Res. 6 (1976) 49–56. A. Kronlöf, M. Leivo, P. Sipari, Experimental study on the basic phenomena of shrinkage and cracking of fresh mortar, Cem. Concr. Res. 25 (1995) 1747–1754. M.D. Cohen, J. Olek, W.L. Dolch, Mechanism of plastic shrinkage cracking in portland cement and portland cement-silica fume paste and mortar, Cem. Concr. Res. 20 (1990) 103–119. A.A. Almusallam, M. Abdul-Waris, M. Maslehuddin, S. Al-Gahtani, Placing and shrinkage at extreme temperatures. Concr. Int. 21 (1999) 75–79. American Concrete Institute, Hot weather concreting. ACI Manual of Concrete Practice, ACI, Detroit, ACI Committee 305. 2010. P.J. Uno, Plastic shrinkage cracking and evaporation formulas, ACI Mater. J. 95 (1998) 365–375. American Society for Testing and Materials, Standard practice for making and curing concrete test specimens in the field, ASTM C31 / C31M-17, ASTM International, West Conshohocken, PA, 2017. C.A. Shaeles, K.C. Hover, Influence of mix proportions and construction operations on plastic shrinkage cracking in thin slabs, ACI Mater. J. 85 (1988) 495–504. A. Torres, J. Hu, A. Ramos, The effect of the cementitious paste thickness on the performance of pervious concrete. Constr. Build. Mater. 95 (2015) 850–859. N.S. Klein, S.H.P. Cavalaro, A. Aguado, I. Segura, B.M. Toralles, The wetting water in cement-based materials: modelling and experimental validation. Constr. Build. Mat. 121 (2016) 34–43. American Society for Testing and Materials, Standard test method for evaluating plastic shrinkage cracking of restrained fiber reinforced concrete (Using a steel form insert). ASTM C1579-06. ASTM International, West Conshohocken, PA, 2006. T.C. Powers, Causes and control of volume change, J. Port. Cem. Assoc. 1 (1959) 29–39. S. Dean, C. Qi, J. Weiss, J. Olek, Statistical Significance of the Restrained Slab Test for Quantifying Plastic Cracking in Fiber Reinforced Concrete, J. ASTM Int. 2 (2005) 12242. R. Pieralisi, S.H.P. Cavalaro, A. Aguado, Evolutionary lattice model for the compaction of pervious concrete in the fresh state, Constr. Build. Mater. 99 (2015) 11–25. R. Pieralisi, S.H.P. Cavalaro, A. Aguado, Discrete element modelling of the fresh state behavior of pervious concrete, Cem. Concr. Res. 90 (2016) 6–18.