Characterization of oxide coating grown by plasma electrolytic oxidation (PEO) at different times on aluminum alloy AA2024-T3
Tóm tắt
Từ khóa
Tài liệu tham khảo
M. Zheludkevich et al., Triazole and thiazole derivatives as corrosion inhibitors for AA2024 aluminium alloy. Corros. Sci. 47, 3368–33833 (2005). https://doi.org/10.1016/j.corsci.2005.05.040
I. Mohammadi et al., Sodium diethyldithiocarbamate as a novel corrosion inhibitor to mitigate corrosion of 2024–T3 aluminum alloy in 3.5 wt% NaCl solution. J. Mol. Liq. 307, 112965 (2020). https://doi.org/10.1016/j.molliq.2020.112965
G. Zhang et al., Active corrosion protection by a smart coating based on a MgAl-layered double hydroxide on a cerium-modified plasma electrolytic oxidation coating on Mg alloy AZ31. Corros. Sci. 139, 370–382 (2018). https://doi.org/10.1016/j.corsci.2018.05.010
E. Botelho et al., Influence of hygrothermal conditioning on the elastic properties of carall laminates. Appl. Compos. Mater. 14(3), 209–222 (2007). https://doi.org/10.1007/s10443-007-9041-3
R. Almeida et al., Effect of surface treatment on fatigue behavior of metal/carbono fiber laminates. J. Mater. Sci. 43(9), 3173–3179 (2008). https://doi.org/10.1007/s10853-008-2528-y
A. Tiamiyu et al., The influence of temper condition on adiabatic Shear failure of AA2024 aluminum alloy. Mater. Sci. Eng.: A 78, 492–502 (2017). https://doi.org/10.1016/j.msea.2017.10.026
O. Ramirez, Corrosion resistance study of 2024 T3 aluminum alloy clad anodized in sulfuric tartaric acid and powder treated in a bath containing Ce ions. Master’s Thesis. University of São Paulo (2019). https://doi.org/10.11606/D.3.2019.tde-16092019-091627
A. Yerokhin et al., Plasma eletrolysis for surface engineering. Surf. Coat. Technol. 122, 73–93 (1999). https://doi.org/10.1016/S0257-8972(99)00441-7
R.O. Hussein, D.O. Northwood, Production of anti-corrosion coatings on light alloys (Al, Mg, Ti) by plasma-electrolytic oxidation (PEO). Dev. Corros. Prot. (2014). https://doi.org/10.5772/57171
F. Simchen et al., Introduction to plasma electrolytic oxidation—an overview of the process and applications. Coatings (2020). https://doi.org/10.3390/coatings10070628
P. Gupta et al., Eletrolytic plasma technology: Science and engineering—an overview. Surf. Coat. Technol. 201, 8746–8760 (2007). https://doi.org/10.1016/j.surfcoat.2006.11.023
R.R. Lucas, L.L.G. Gonçalves, D.C.R. dos Santos, Morphological and chemical characterization of oxide films produced by plasma anodization of 5052 aluminum alloy in solution containing sodium silicate and sodium phosphate. Revista Brasileira de Aplicações de Vácuo 39, 33–41 (2020). https://doi.org/10.17563/rbav.v39i1.1154
J. Xue et al., Preparation of silicon-modified gamma alumina coating through cathodic plasma electrolytic oxidation. Ceram. Int. 45, 19345–19350 (2019). https://doi.org/10.1016/j.cermint.2019.06.186
A. Yerokhin et al., Adhesive bond strength of PEO coated AA6060-T6. Surf. Coat. Technol. 428, 127898 (2021). https://doi.org/10.1016/j.surfcoat.2021.127898
S. Fatimah et al., Development of anti-corrosive coating on AZ31 Mg alloy subjected to plasma electrolytic oxidation at sub-zero temperature. J. Magnes. Alloys (2021). https://doi.org/10.1016/j.jma.2021.07.013
Q. Huang et al., Corrosion-resistant plasma electrolytic oxidation coating modified by Zinc phosphate and self-healing mechanism in the salt-spray environment. Surf. Coat. Technol. 384, 125321 (2020). https://doi.org/10.1016/j.surfcoat.2019.125321
R.E.P. Salem, A.S.A. Chinelatto, A.L. Chinelatto, Synthesis of alumina powders by a modified Pechini method with addition of seeds in different calcination atmospheres. Cerâmica 60, 108–116 (2014). https://doi.org/10.1590/S0366-69132014000100016
N. Rameshbabu et al., Fabrication of corrosion-resistance Al2O3-CeO2 composite coating on AA7075 via plasma electrolytic oxidation coupled with electrophoretic deposition. Ceram. Int. 42, 5897–5905 (2016). https://doi.org/10.1016/j.ceramint.2015.12.136
Z. Wu et al., Corrosion behavior of ZnO-reinforced coating on aluminum alloy prepared by plasma electrolytic oxidation. Surf. Coat. Technol. 374, 1015–1023 (2019). https://doi.org/10.1016/j.surfcoat.2019.06.079
K. Yang et al., A novel self-adaptive control method for plasma electrolytic oxidation processing of aluminum alloys. Materials 12, 2744 (2019). https://doi.org/10.3390/ma12172744
W. Li et al., Effects of Si phase refinement on the plasma electrolytic oxidation of eutectic Al-Si alloy. J. Alloys Compd. 790, 650–656 (2019). https://doi.org/10.1016/j.jallcom.2019.03.217
J. Martin et al., Formation of a metastable nanostrutured mullite during plasma eletrolytic oxidation of aluminium in “soft” regime condition. Mater. Des. 180, 107977 (2019). https://doi.org/10.1016/j.matdes.2019.107977
K. Khan et al., Surface characterisation of DC plasma electrolytic oxidation treated 6082 aluminium alloy: effect of current density and electrolyte concentration. Surf. Coat. Technol. 205, 1679–1688 (2010). https://doi.org/10.1016/j.surfcoat.2010.04.052
S. Aliasghari, Effect of plasma electrolytic oxidation on joining of AA 5052 aluminium alloy to polypropylene using friction stir spot welding. Surf. Coat. Technol. 313, 274–281 (2017). https://doi.org/10.1016/j.surfcoat.2017.01.084
D. He et al., Fatigue life of micro-arc oxidation coated AA2024-T3 and AA7075-T6 alloys. Int. J. Fatigue 124, 493–502 (2019). https://doi.org/10.1016/j.ijfatigue.2019.03.028
J.R. Goes et al., Avaliação da potencialidade de argilas da formação geológica Calumbi e Riachuelo em Sergipe para aplicação em revestimento cerâmico. Cerâmica 60, 211–217 (2014). https://doi.org/10.1590/S0366-69132014000200008