Đặc trưng hệ vi sinh vật trong bệnh nhân bạch cầu cấp sau khi hóa trị đạt được remisssion thành công mà không có dự phòng bằng kháng sinh

International Microbiology - Tập 24 - Trang 263-273 - 2021
Zhenglei Shen1, Xuezhong Gu2, Honghua Cao1, Wenwen Mao3, Linlin Yang4, Min He1, Rui Zhang1, Yeying Zhou1, Kunmei Liu1, Lilan Wang1, Lianqing Liu1, Jingxing Yu5, Liefen Yin5
1Department of Hematology, The Third Affiliated Hospital of Kunming Medical University, Kunming, China
2Department of Hematology, The First People’s Hospital of Yunnan Province, Kunming, China
3Department of Geriatrics, The Second People’s Hospital of Kunming, Kunming, China
4Department of Gynecology, The Third Affiliated Hospital of Kunming Medical University, Kunming, China
5Department of Hematology, The Second Affiliated Hospital of Kunming Medical University, Kunming, China

Tóm tắt

Trong nghiên cứu này, chúng tôi đã mô tả các hệ vi sinh vật của những bệnh nhân bạch cầu cấp (AL) đạt được sự hồi phục hoàn toàn sau hoá trị liệu khởi phát hồi phục (RIC) với tư cách là bệnh nhân ngoại trú nhưng không nhận được kháng sinh để điều trị hoặc dự phòng tình trạng giảm bạch cầu trung tính sốt. Mẫu nước bọt và phân từ 9 bệnh nhân bạch cầu tủy cấp, 11 bệnh nhân bạch cầu lympho cấp, và 5 người kiểm soát khỏe mạnh đã được phân tích thông qua trình tự RNA ribosome 16S tại thời điểm ban đầu và sau 3 tháng điều trị RIC. Chỉ những bệnh nhân đạt được sự hồi phục sau 3 tháng điều trị được đưa vào nghiên cứu. Chúng tôi đã loại trừ bất kỳ ai sử dụng kháng sinh trong vòng 2 tháng kể từ khi tham gia nghiên cứu hoặc trong bất kỳ thời điểm nào trong thời gian nghiên cứu. Tại thời điểm ban đầu, độ phong phú tương đối của các loài Prevotella maculosa (P=0.001), Megasphaera micronuciformis (P=0.014), Roseburia inulinivorans (P=0.021), và Bacteroides uniformis (P=0.004) trong nước bọt và Prevotella copri (P=0.002) trong phân của các đối tượng kiểm soát cao hơn đáng kể so với bệnh nhân AL. Sau khi điều trị RIC, độ phong phú tương đối của Eubacterium sp. clone miệng DO008 (P=0.012), Leptotrichia sp. clone miệng IK040 (P=0.002), Oribacterium sp. thuế miệng 108 (P=0.029), Megasphaera micronuciformis (P=0.016), loài TM7 clone miệng DR034 (P<0.001), Roseburia inulinivorans (P=0.034), Actinomyces odontolyticus (P=0.014), Leptotrichia buccalis (P=0.005), và Prevotella melaninogenica (P=0.046) trong nước bọt và Lactobacillus fermentum (P=0.046), Coprococcus catus (P=0.050), vi khuẩn sinh butyrate SS3/4 (P=0.013), và Bacteroides coprocola (P=0.027) trong phân của bệnh nhân AL cao hơn đáng kể so với các đối tượng kiểm soát. Sau khi RIC, nhiều taxon đã thay đổi trong mẫu phân và nước bọt của bệnh nhân AL. Kết quả của chúng tôi cho thấy cần tiến hành các nghiên cứu đa trung tâm quy mô lớn trong tương lai để kiểm tra xem hệ vi sinh vật có thể ảnh hưởng đến kết quả lâm sàng của bệnh nhân AL hay không.

Từ khóa


Tài liệu tham khảo

Akrami K, Sweeney D (2018) The microbiome of the critically ill patient. Curr Opin Crit Care 24:49–54. https://doi.org/10.1097/MCC.0000000000000469 Arthur JC et al (2012) Intestinal inflammation targets cancer-inducing activity of the microbiota. Science 338:120–123. https://doi.org/10.1126/science.1224820 Bindels LB, Porporato P, Dewulf EM, Verrax J, Neyrinck AM, Martin JC, Scott KP, Buc Calderon P, Feron O, Muccioli GG, Sonveaux P, Cani PD, Delzenne NM (2012) Gut microbiota-derived propionate reduces cancer cell proliferation in the liver. Brit J Cancer 107:1337–1344. https://doi.org/10.1038/bjc.2012.409 Bindels LB, Neyrinck AM, Claus SP, le Roy CI, Grangette C, Pot B, Martinez I, Walter J, Cani PD, Delzenne NM (2016) Synbiotic approach restores intestinal homeostasis and prolongs survival in leukaemic mice with cachexia. ISME J 10:1456–1470. https://doi.org/10.1038/ismej.2015.209 Boulangé CL, Neves AL, Chilloux J, Nicholson JK, Dumas M-E (2016) Impact of the gut microbiota on inflammation, obesity, and metabolic disease. Genome Med 8:42. https://doi.org/10.1186/s13073-016-0303-2 Bow E, Meddings J (2006) Intestinal mucosal dysfunction and infection during remission-induction therapy for acute myeloid leukaemia. Leukemia 20:2087–2092. https://doi.org/10.1038/sj.leu.2404440 Bow EJ, Wingard J, Bowden R (2003) Infectious complications in patients receiving cytotoxic therapy for acute leukemia: history, background, and approaches to management. Manag Infect Oncol Patients:71–104 Brennan CA, Garrett WS (2016) Gut microbiota, inflammation, and colorectal cancer. Annu Rev Microbiol 70:395–411. https://doi.org/10.1146/annurev-micro-102215-095513 Couturier-Maillard A, Secher T, Rehman A, Normand S, de Arcangelis A, Haesler R, Huot L, Grandjean T, Bressenot A, Delanoye-Crespin A, Gaillot O, Schreiber S, Lemoine Y, Ryffel B, Hot D, Nùñez G, Chen G, Rosenstiel P, Chamaillard M (2013) NOD2-mediated dysbiosis predisposes mice to transmissible colitis and colorectal cancer. J Clin Invest 123:700–711 de Castro JC, Ganc A, Ganc R, Petrolli M, Hamerschlack N (2015) Fecal microbiota transplant after hematopoietic SCT: report of a successful case. Bone Marrow Transplant 50:145 Ferreira RM, Pereira-Marques J, Pinto-Ribeiro I, Costa JL, Carneiro F, Machado JC, Figueiredo C (2018) Gastric microbial community profiling reveals a dysbiotic cancer-associated microbiota. Gut 67:226–236 Flowers C et al (2013) Antimicrobial prophylaxis and outpatient management of fever and neutropenia in adults treated for malignancy: American Society of Clinical Oncology clinical practice guideline. J Clin Oncol 31:794–810 Galloway-Peña JR, Smith DP, Sahasrabhojane P, Ajami NJ, Wadsworth WD, Daver NG, Chemaly RF, Marsh L, Ghantoji SS, Pemmaraju N, Garcia-Manero G, Rezvani K, Alousi AM, Wargo JA, Shpall EJ, Futreal PA, Guindani M, Petrosino JF, Kontoyiannis DP, Shelburne SA (2016) The role of the gastrointestinal microbiome in infectious complications during induction chemotherapy for acute myeloid leukemia. Cancer 122:2186–2196. https://doi.org/10.1002/cncr.30039 Galloway-Peña JR, Smith DP, Sahasrabhojane P, Wadsworth WD, Fellman BM, Ajami NJ, Shpall EJ, Daver N, Guindani M, Petrosino JF, Kontoyiannis DP, Shelburne SA (2017) Characterization of oral and gut microbiome temporal variability in hospitalized cancer patients. Genome Med 9:21 Gardner A, Mattiuzzi G, Faderl S, Borthakur G, Garcia-Manero G, Pierce S, Brandt M, Estey E (2008) Randomized comparison of cooked and noncooked diets in patients undergoing remission induction therapy for acute myeloid leukemia. J Clin Oncol 26:5684–5688 Gopalakrishnan V, Helmink BA, Spencer CN, Reuben A, Wargo JA (2018) The influence of the gut microbiome on cancer, immunity, and cancer immunotherapy. Cancer Cell 33:570–580 Harata G, Kumar H, He F, Miyazawa K, Yoda K, Kawase M, Kubota A, Hiramatsu M, Rautava S, Salminen S (2017) Probiotics modulate gut microbiota and health status in Japanese cedar pollinosis patients during the pollen season. Eur J Nutr 56:2245–2253 Hefazi M, Patnaik M, Hogan W, Litzow M, Pardi D, Khanna S (2017) Safety and efficacy of fecal microbiota transplant for recurrent clostridium difficile infection in patients with cancer treated with cytotoxic chemotherapy: a single-institution retrospective case series. In: Mayo Clinic Proceedings, vol 11, p 1617 Jin C, Lagoudas GK, Zhao C, Bullman S, Bhutkar A, Hu B, Ameh S, Sandel D, Liang XS, Mazzilli S, Whary MT, Meyerson M, Germain R, Blainey PC, Fox JG, Jacks T (2019) Commensal microbiota promote lung cancer development via γδ T cells. Cell 176:998–1013 Junghanss C, Marr KA, Carter RA, Sandmaier BM, Maris MB, Maloney DG, Chauncey T, McSweeney PA, Storb R (2002) Incidence and outcome of bacterial and fungal infections following nonmyeloablative compared with myeloablative allogeneic hematopoietic stem cell transplantation: a matched control study. Biol Blood Marrow Transplant 8:512–520 Karlsson F, Tremaroli V, Nielsen J, Bäckhed F (2013) Assessing the human gut microbiota in metabolic diseases. Diabetes 62:3341–3349 Kelly CR, Ihunnah C, Fischer M, Khoruts A, Surawicz C, Afzali A, Aroniadis O, Barto A, Borody T, Giovanelli A, Gordon S, Gluck M, Hohmann EL, Kao D, Kao JY, McQuillen DP, Mellow M, Rank KM, Rao K, Ray A, Schwartz MA, Singh N, Stollman N, Suskind DL, Vindigni SM, Youngster I, Brandt L (2014) Fecal microbiota transplant for treatment of clostridium difficile infection in immunocompromised patients. Am J Gastroenterol 109:1065–1071 Klastersky J, Paesmans M, Rubenstein EB, Boyer M, Elting L, Feld R, Gallagher J, Herrstedt J, Rapoport B, Rolston K, Talcott J, for the Study Section on Infections of Multinational Association for Supportive Care in Cancer (2000) The multinational association for supportive care in cancer risk index: a multinational scoring system for identifying low-risk febrile neutropenic cancer patients. J Clin Oncol 18:3038–3051 Kroemer G, Zitvogel L (2018) Cancer immunotherapy in 2017: the breakthrough of the microbiota. Nat Rev Immunol 18:87–88 Lozupone CA, Hamady M, Kelley ST, Knight R (2007) Quantitative and qualitative β diversity measures lead to different insights into factors that structure microbial communities. Appl Environ Microbiol 73:1576–1585 Magill SS, Edwards JR, Bamberg W, Beldavs ZG, Dumyati G, Kainer MA, Lynfield R, Maloney M, McAllister-Hollod L, Nadle J, Ray SM, Thompson DL, Wilson LE, Fridkin SK, Emerging Infections Program Healthcare-Associated Infections and Antimicrobial Use Prevalence Survey Team (2014) Multistate point-prevalence survey of health care–associated infections. N Engl J Med 370:1198–1208 Murphy C, O’Toole P, Shanahan F (2019) The Gut microbiota in causation, detection, and treatment of cancer. Am J Gastroenterol 114:1036–1042 Ojima M, Motooka D, Shimizu K, Gotoh K, Shintani A, Yoshiya K, Nakamura S, Ogura H, Iida T, Shimazu T (2016) Metagenomic analysis reveals dynamic changes of whole gut microbiota in the acute phase of intensive care unit patients. Dig Dis Sci 61:1628–1634 Pamer EG (2016) Resurrecting the intestinal microbiota to combat antibiotic-resistant pathogens. Science 352:535–538 Peled JU, Devlin SM, Staffas A, Lumish M, Khanin R, Littmann ER, Ling L, Kosuri S, Maloy M, Slingerland JB, Ahr KF, Porosnicu Rodriguez KA, Shono Y, Slingerland AE, Docampo MD, Sung AD, Weber D, Alousi AM, Gyurkocza B, Ponce DM, Barker JN, Perales MA, Giralt SA, Taur Y, Pamer EG, Jenq RR, van den Brink MRM (2017) Intestinal microbiota and relapse after hematopoietic-cell transplantation. J Clin Oncol 35:1650–1659 Peled JU et al (2019) Inferior survival after microbiota injury: a multicenter allo-HCT study. Am Soc Clin Oncol Rajagopala S, Vashee S, Oldfield L, Suzuki Y, Venter J, Telenti A, Nelson K (2017) The Human microbiome and cancer. Cancer Prev Res 10:226–234 Rashidi A, Kaiser T, Shields-Cutler R, Graiziger C, Holtan SG, Rehman TU, Wasko J, Weisdorf DJ, Dunny G, Khoruts A, Staley C (2019a) Dysbiosis patterns during re-induction/salvage versus induction chemotherapy for acute leukemia. Sci Rep 9:6083 Rashidi A, Kaiser T, Shields-Cutler R, Graiziger C, Rehman TU, Holtan SG, Weisdorf DJ, Knights D, Khoruts A, Staley C (2019b) Outpatient-to-inpatient transition causes marked dysbiosis in allogeneic hematopoietic cell transplantation recipients. Biol Blood Marrow Tr 25:S47 Rogers G, Bruce K (2010) Next-generation sequencing in the analysis of human microbiota: essential considerations for clinical application. Mol Diagn Ther 14:343–350 Rooks MG, Garrett WS (2016) Gut microbiota, metabolites and host immunity. Nat Rev Immunol 16:341–352 Roy S, Trinchieri G (2017) Microbiota: a key orchestrator of cancer therapy. Nat Rev Cancer 17:271–285 Segata N, Izard J, Waldron L, Gevers D, Miropolsky L, Garrett WS, Huttenhower C (2011) Metagenomic biomarker discovery and explanation. Genome Biol 12:R60 Shen X, Miao J, Wan Q, Wang S, Li M, Pu F, Wang G, Qian W, Yu Q, Marotta F, He F (2018) Possible correlation between gut microbiota and immunity among healthy middle-aged and elderly people in southwest China. Gut Pathog 10:4 Taplitz R et al (2018) Antimicrobial prophylaxis for adult patients with cancer-related immunosuppression: ASCO and IDSA clinical practice guideline update. J Clin Oncol 36:3043–3054 Taur Y, Xavier JB, Lipuma L, Ubeda C, Goldberg J, Gobourne A, Lee YJ, Dubin KA, Socci ND, Viale A, Perales MA, Jenq RR, van den Brink MRM, Pamer EG (2012) Intestinal domination and the risk of bacteremia in patients undergoing allogeneic hematopoietic stem cell transplantation. Clin Infect Dis 55:905–914 Taur Y, Jenq RR, Perales MA, Littmann ER, Morjaria S, Ling L, No D, Gobourne A, Viale A, Dahi PB, Ponce DM, Barker JN, Giralt S, van den Brink M, Pamer EG (2014) The effects of intestinal tract bacterial diversity on mortality following allogeneic hematopoietic stem cell transplantation. Blood 124:1174–1182 Taur Y et al (2018) Reconstitution of the gut microbiota of antibiotic-treated patients by autologous fecal microbiota transplant. Sci Transl Med 10:eaap9489 Tilg H, Adolph T, Gerner R, Moschen A (2018) The intestinal microbiota in colorectal cancer. Cancer Cell 33:954–964 van Vliet MJ, Tissing WJE, Dun CAJ, Meessen NEL, Kamps WA, de Bont ESJM, Harmsen HJM (2009) Chemotherapy treatment in pediatric patients with acute myeloid leukemia receiving antimicrobial prophylaxis leads to a relative increase of colonization with potentially pathogenic bacteria in the gut. Clin Infect Dis 49:262–270. https://doi.org/10.1086/599346 Wang Z, Wang Q, Wang X, Zhu L, Chen J, Zhang B, Chen Y, Yuan Z (2019) Gut microbial dysbiosis is associated with development and progression of radiation enteritis during pelvic radiotherapy. J Cell Mol Med 23:3747–3756 Yu LC-H, Shih YA, Wu LL, Lin YD, Kuo WT, Peng WH, Lu KS, Wei SC, Turner JR, Ni YH (2014) Enteric dysbiosis promotes antibiotic-resistant bacterial infection: systemic dissemination of resistant and commensal bacteria through epithelial transcytosis. Am J Physiol Gastrointest Liver Physiol 307:G824–G835