Characterization of local deformation around hydrides in Zircaloy-4 using conventional and high angular resolution electron backscatter diffraction

Materials Characterization - Tập 202 - Trang 112988 - 2023
Ruth M. Birch1,2, James O. Douglas1, T. Ben Britton1,2
1Department of Materials, Imperial College London, Exhibition Road, London SW7 2AZ, UK
2Department of Materials Engineering, University of British Columbia, Frank Forward Building, 309-6350 Stores Road, Vancouver, BC V6T 1Z4, Canada

Tài liệu tham khảo

Rickover, 1975 Motta, 2019, Hydrogen in zirconium alloys: a review, J. Nucl. Mater., 518, 440, 10.1016/j.jnucmat.2019.02.042 Suman, 2015, Hydrogen in Zircaloy: mechanism and its impacts, Int. J. Hydrog. Energy, 40, 5976, 10.1016/j.ijhydene.2015.03.049 Steuwer, 2009, Evidence of stress-induced hydrogen ordering in zirconium hydrides, Acta Mater., 57, 145, 10.1016/j.actamat.2008.08.061 Cheadle, 1984, Orientation of hydrides in zirconium alloy tubes, Zircon. Nucl. Ind. Sixth Int. Symp. ASTM STP, 824, 210 Weekes, 2016, Hydride reorientation in Zircaloy-4 examined by in situ synchrotron X-ray diffraction, J. Nucl. Mater., 478, 32, 10.1016/j.jnucmat.2016.05.029 Birch, 2019, The effect of cooling rate and grain size on hydride microstructure in Zircaloy-4, J. Nucl. Mater., 513, 221, 10.1016/j.jnucmat.2018.11.011 Carpenter, 1973, The dilatational misfit of zirconium hydrides precipitated in zirconium, J. Nucl. Mater., 48, 264, 10.1016/0022-3115(73)90022-6 Wang, 2019, Microstructure and formation mechanisms of δ-hydrides in variable grain size Zircaloy-4 studied by electron backscatter diffraction, Acta Mater., 169, 76, 10.1016/j.actamat.2019.02.042 Bailey, 1963, Electron microscope observations on the precipitation of zirconium hydride in zirconium, Acta Metall., 11, 267, 10.1016/0001-6160(63)90182-2 IAEA - International Atomic Energy Agency, 2004, 43 Barrow, 2013, Evaluating zirconium-zirconium hydride interfacial strains by nano-beam electron diffraction, J. Nucl. Mater., 432, 366, 10.1016/j.jnucmat.2012.08.003 Kerr, 2008, Strain evolution of zirconium hydride embedded in a Zircaloy-2 matrix, J. Nucl. Mater., 380, 70, 10.1016/j.jnucmat.2008.07.004 Allen, 2012, Measurement and modeling of strain fields in zirconium hydrides precipitated at a stress concentration, J. Nucl. Mater., 430, 27, 10.1016/j.jnucmat.2012.06.037 Reali, 2022, Dislocation modelling of the plastic relaxation and thermal ratchetting induced by zirconium hydride precipitation, J. Mech. Phys. Solids, 167 Puls, 2005, Experimental studies of mechanical properties of solid zirconium hydrides, J. Nucl. Mater., 336, 73, 10.1016/j.jnucmat.2004.08.016 Barraclough, 1970, Some observations on the phase transformations in zirconium hydrides, J. Nucl. Mater., 34, 125, 10.1016/0022-3115(70)90112-1 Lu, 2021, Nanoscale characterisation of hydrides and secondary phase particles in Zircaloy-4, Arxiv Long, 2021, Towards resolving a long existing phase stability controversy in the Zr-H, Ti-H systems, J. Nucl. Mater., 543, 10.1016/j.jnucmat.2020.152540 Tong, 2017, Formation of very large ‘blocky alpha’ grains in Zircaloy-4, Acta Mater., 129, 510, 10.1016/j.actamat.2017.03.002 Chang, 2019, Ti and its alloys as examples of cryogenic focused ion beam milling of environmentally-sensitive materials, Nat. Commun., 10, 1, 10.1038/s41467-019-08752-7 Hanlon, 2019, A solution to FIB induced artefact hydrides in Zr alloys, J. Nucl. Mater., 515, 122, 10.1016/j.jnucmat.2018.12.020 Fang, 2022, Optimizing broad ion beam polishing of zircaloy-4 for electron backscatter diffraction analysis, Micron, 10.1016/j.micron.2022.103268 Bachmann, 2010, Texture analysis with MTEX- free and open source software toolbox, Solid State Phenom., 160, 63, 10.4028/www.scientific.net/SSP.160.63 Britton, 2012, High resolution electron backscatter diffraction measurements of elastic strain variations in the presence of larger lattice rotations, Ultramicroscopy, 114, 82, 10.1016/j.ultramic.2012.01.004 Wilkinson, 2006, High-resolution elastic strain measurement from electron backscatter diffraction patterns: new levels of sensitivity, Ultramicroscopy, 106, 307, 10.1016/j.ultramic.2005.10.001 Wilkinson, 2006, High resolution mapping of strains and rotations using electron backscatter diffraction, Mater. Sci. Technol., 22, 1271, 10.1179/174328406X130966 Fisher, 1964, Single-crystal elastic moduli and the hcp → bcc transformation in Ti, Zr, and Hf, Phys. Rev., 135, 10.1103/PhysRev.135.A482 Gaillac, 2016, ELATE: an open-source online application for analysis and visualization of elastic tensors, J. Phys. Condens. Matter, 28, 10.1088/0953-8984/28/27/275201 Britton, 2010, The effect of crystal orientation on the indentation response of commercially pure titanium: experiments and simulations, Proc. R. Soc. A Math. Phys. Eng. Sci., 466, 695 Burr, 2013, Hydrogen accommodation in Zr second phase particles: implications for H pick-up and hydriding of Zircaloy-2 and Zircaloy-4, Corros. Sci., 69, 1, 10.1016/j.corsci.2012.11.036 Zircaloy-4 Zirconium Alloy Guo, 2021, Texture development and mechanical behavior of Zircaloy-4 alloy plates fabricated by cold rolling and annealing, Mater. Sci. Eng. A, 807 Long, 2023, The influence of microstructure on short fatigue crack growth rates in Zircaloy-4: crystal plasticity modelling and experiment, Int. J. Fatigue, 167 Guo, 2014, Slip band-grain boundary interactions in commercial-purity titanium, Acta Mater., 76, 1, 10.1016/j.actamat.2014.05.015 Puls